Análisis y diseño sísmico de una edificación multifamiliar de diez niveles y dos sótanos aplicando la interacción suelo-estructura con un sistema dual y platea de cimentación

Seismic Analysis and Design of a Ten-Story, Two-Basement Multifamily Building Using Soil-Structure Interaction with a Dual System and Foundation Slab

Análise comparativa de metodologias de pré-dimensionamento de colunas em edifício de seis níveis sem cave

Bladimir Quispe¹, Edson Carcausto², Genner Villarreal^{3(*)}

Recibido: 23/02/2024

Aceptado: 20/04/2024

Resumen. - La presente investigación se desarrolla con la finalidad de determinar la influencia de la interacción sísmica en una edificación con respecto a una edificación con suposición de base fija. El edificio a modelar es de concreto armado con un sistema dual, cuya estructura está conformada por 10 niveles y dos sótanos, y una platea de cimentación la cual está ubicada en la ciudad de Arequipa, distrito de Yura.

Generalmente al realizar los análisis sísmicos de diferentes edificaciones se asume una suposición de base fija. Esta constituye particularmente adecuada siempre y cuando el tipo de suelo sea el de un tipo de roca dura a diferencia de otros tipos de suelos que no presentarían estas cualidades para un análisis con suposición de base fija. En la investigación se evalúa la influencia de la interacción suelo – estructura, es por esto que para la realización del modelamiento se utiliza el programa ETABS 2016, se procede a realizar un modelamiento de la edificación y a su vez esta cumpla lo establecido en la Norma Técnica E.030 de Diseño Sismorresistente. Posterior a esto se analiza la estructura, tomando en consideración la aplicación de los modelos dinámicos de D.D. Barkan – O.A. Savinov, Norma Rusa SNIP 2.02.05-87, A.E. Sargsian y N.G. Shariya.

Finalmente se concluye que, de los resultados obtenidos al realizar el análisis con la suposición de base fija versus el modelo de interacción suelo-estructura, los periodos fundamentales, el desplazamiento en las direcciones X e Y, las distorsiones, los esfuerzos cortantes en la base, las fuerzas internas de los elementos estructurales sufren un impacto en el resultado de cada uno de ellos.

Palabras clave: Análisis sísmico, suposición de base fija, sistema dual, interacción suelo - estructura.

ISSN 2301-1092 • ISSN (en línea) 2301-1106 – Universidad de Montevideo, Uruguay

Este es un artículo de acceso abierto distribuido bajo los términos de una licencia de uso y distribución CC BY 4.0. Para ver una copia de esta licencia visite https://creativecommons.org/licenses/by/4.0/

^(*) Autor Corresponsal

¹ Ingeniero Civil. Universidad de San Martin de Porres (Perú), bladimir_quispe@usmp.pe, ORCID iD: https://orcid.org/0009-0005-5741-0769

² Ingeniero Civil. Universidad de San Martin de Porres, edson_carcausto@usmp.pe, ORCID iD: https://orcid.org/0009-0004-3262-0279

³ PhD. Universidad de San Martin de Porres, gvillarrealc@usmp.pe, ORCID iD: https://orcid.org/0000-0003-1768-646X

Summary. - The present investigation is developed with the purpose of determining the influence of the seismic interaction in a building with respect to a building with perfect embedment. The building to be modeled is a reinforced concrete building with a dual system, whose structure consists of 10 levels and two basements, and a foundation slab which is located in the city of Arequipa, district of Yura.

Generally, when performing seismic analysis of different buildings, a perfect embedment is assumed. This is particularly adequate as long as the type of soil is hard rock or very stiff soils, as opposed to other types of soils that would not present these qualities for a perfect embedment analysis. In this investigation, the influence of soil-structure interaction is evaluated, which is why the ETABS 2016 program is used to perform the modeling, and the building is modeled to comply with the provisions of the Technical Standard E.030 of Seismic Resistant Design. Subsequently, the structure is analyzed, taking into consideration the application of the dynamic models of D.D. Barkan - O.A. Savinov, Russian Standard SNIP 2.02.05-87, A.E. Sargsian and N.G. Shariya.

Finally, it is concluded that, from the results obtained when carrying out the analysis with the assumption of a fixed base versus the soil-structure interaction model, the fundamental periods, the displacement in the X and Y directions, the distortions, the shear stresses in the base, the internal forces of the structural elements, suffer an impact on the result of each of them.

Keywords: Seismic analysis, fixed base assumption, dual system, soil-structure interaction.

Resumo. - A presente investigação desenvolve-se com o objectivo de determinar a influência da interacção sísmica num edifício relativamente a um edifício com hipótese de base fixa. O edifício a modelar é de concreto armado de sistema duplo, cuja estrutura é composta por 10 níveis e dois subsolos, e uma laje de fundação que está localizada na cidade de Arequipa, distrito de Yura.

Geralmente, ao realizar análises sísmicas de diferentes edifícios, assume-se uma suposição de base fixa. Isto é particularmente adequado desde que o tipo de solo seja um tipo de rocha dura, ao contrário de outros tipos de solo que não apresentariam estas qualidades para uma análise com uma suposição de base fixa. Na pesquisa é avaliada a influência da interação solo-estrutura, por isso é utilizado o programa ETABS 2016 para realizar a modelagem. O edifício é modelado e por sua vez atende ao disposto na Norma Técnica E.030. -Design resistente. Depois disso, a estrutura é analisada, levando em consideração a aplicação dos modelos dinâmicos de D.D. Barkan – O.A. Savinov, padrão russo SNIP 2.02.05-87, A.E. Sargsian e N.G. Sharia.

Por fim, conclui-se que, a partir dos resultados obtidos ao realizar a análise com pressuposto de base fixa versus modelo de interação solo-estrutura, foram identificados os períodos fundamentais, o deslocamento nas direções X e Y, as distorções, as tensões de cisalhamento na base, as forças internas dos elementos estruturais impactam no resultado de cada um deles.

Palavras-chave: Análise sísmica, suposição de base fixa, sistema dual, interação solo-estrutura.

1. Introducción. - El análisis de Interacción Suelo – Estructura es un método nuevo de análisis sísmico, el cual conecta a la Ingeniería Estructural con la Ingeniería Geotécnica, esta unión se da en la interacción de la base de la edificación con el suelo de fundación. En los últimos años los programas de software estructural tienen el desarrollo de capacidades que permiten varios tipos de estructuras, las cuales consideran la interacción que se da con el suelo de fundación de la base de la edificación de la base de la edificación de la base de la edificación.

En nuestra actualidad existen varios softwares como SAP2000, ETABS, STAAD Pro, ROBOT STRUCTURAL, Oasys GSA, entre otros, en las cuales nos permiten hacer modelamientos de cualquier tipo de estructuras, considerando el efecto de la interacción suelo-estructura.

Los softwares estructurales que incorporan capacidades SSI (Interacción suelo-estructura) son herramientas poderosas para el análisis y diseño de estructuras complejas, por ejemplo:

SAP2000: Es un software ampliamente utilizado para el análisis y diseño de estructuras civiles. Incorpora capacidades SSI que permiten modelar y analizar sistemas estructurales con subestructuras independientes. SAP2000 es conocido por su versatilidad y robustez en el análisis de estructuras de diferentes tipos y materiales.

ETABS: Similar a SAP2000, ETABS es otro software líder en el análisis y diseño de estructuras. Además de sus capacidades avanzadas para modelar y analizar edificios de varios pisos, ETABS también incorpora funcionalidades SSI para el análisis de sistemas estructurales complejos.

STAAD.Pro: Desarrollado por Bentley Systems, STAAD.Pro es una herramienta de análisis estructural que permite modelar y analizar una amplia variedad de estructuras, desde simples hasta muy complejas. STAAD.Pro incluye capacidades SSI que facilitan el análisis de sistemas con subestructuras independientes.

ROBOT STRUCTURAL Analysis Professional: Este software de Autodesk es utilizado para el análisis y diseño de estructuras de acero, concreto y madera. Incorpora capacidades SSI que permiten modelar y analizar sistemas estructurales complejos, como puentes y edificios de múltiples niveles con elementos estructurales independientes.

Oasys GSA (General Structural Analysis): Oasys GSA es un software de análisis estructural que ofrece capacidades avanzadas para el modelado y análisis de estructuras complejas. Incorpora funcionalidades SSI que permiten analizar sistemas con subestructuras independientes de manera eficiente.

Estos son solo algunos ejemplos de software estructural que incorporan capacidades SSI. Cada uno de estos programas tiene sus propias características y ventajas, por lo que la elección del software adecuado dependerá de las necesidades específicas del proyecto y de las preferencias del usuario.

Al observar las actuales tendencias de modelamiento estructural referidas a la SSI, se puede inferir que es posible modelar esta edificación donde los sistemas de apoyos consideren la presencia física de las cimentaciones y el suelo donde se apoya. Este tipo de modelamiento permite acercarnos al real comportamiento de los sistemas de apoyo en las estructuras y, por lo tanto, a una respuesta más próxima de la edificación frente a las acciones de gravedad y principalmente de sismo.

Existen dos métodos de realización de la interacción suelo-estructura, el método geotécnico que modela la estructura, la cimentación y el suelo de fundación con elementos sólidos incorporando sus propiedades físico-mecánicas y el método estructural, que modela la interacción suelo-estructura, incorporando los coeficientes de rigidez equivalente [23].

En la actualidad, existen dos formas de considerar la interacción suelo-estructura por el método estructural, una es la forma directa, aplicando los coeficientes de rigidez equivalente y otra es la forma inversa, generando un nuevo espectro para su diseño [24].

En la presente investigación se aplicó la forma directa del método estructural, la cual goza de gran popularidad y aplicación en muchos códigos de diseño a nivel mundial.

2. Análisis Sísmico. -

2.1. Análisis estático o de fuerzas estáticas equivalentes. - El presente análisis estático representa las solicitaciones sísmicas mediante fuerzas que actúan en el centro de masa de cada nivel de la edificación.

El artículo 28.1.2. de la Norma de Diseño Sismorresistente del Perú (E030), para el análisis mediante este procedimiento se pueden tomar estructuras regulares o irregulares ubicadas en la zona sísmica 1, en las otras zonas sísmicas puede emplearse este procedimiento para las estructuras clasificadas como regulares, según el artículo 19, de no más de 30 m de altura y de no más de 15 m de altura para las estructuras con muros portantes de concreto armado y albañilería confinada.

Según lo descrito en el artículo 28.1.2. la edificación en estudio no cumple con este artículo, por tal motivo se identifica que la edificación tiene una altura mayor a 30 m y es por ello que no es necesario el análisis estático en la edificación.

2.1.1. Consideraciones y limitaciones:

a) Linealidad de la respuesta: Este método asume que la respuesta de la estructura es lineal ante las cargas estáticas aplicadas. Sin embargo, en estructuras altamente no lineales, como aquellas sujetas a grandes deformaciones o comportamiento plástico, este enfoque puede no ser adecuado.

b) No considera efectos dinámicos: El análisis estático no tiene en cuenta los efectos dinámicos del comportamiento estructural, como la redistribución de cargas debido a la inercia y la rigidez dinámica.

c) Sensibilidad a la selección de cargas de diseño: La precisión del análisis estático depende en gran medida de la selección adecuada de las cargas de diseño y de su distribución en la estructura. Una mala elección puede conducir a resultados inexactos.

d) Limitaciones en estructuras irregulares: En el caso de estructuras altamente irregulares en planta o en elevación, el análisis estático puede subestimar o sobrestimar la respuesta sísmica debido a la falta de consideración de los efectos dinámicos.

2.2. Análisis dinámico modal espectral. - El análisis del edificio se realiza mediante el método de combinación modal espectral, dependientes de las masas que se aplican en el centro de masas, la rigidez de la estructura y el espectro de diseño, de acuerdo a la Norma de Diseño Sismorresistente E030. Los resultados esperados son los períodos de vibración, número de modos, estudio de formas de vibrar, alabeo en losas, desplazamiento lateral, distorsión de entrepisos y fuerzas internas de diseño por sismo, verificando las irregularidades y el cortante dinámico mínimo.

2.2.1. Consideraciones y limitaciones:

a) Linealidad de las propiedades modales: El análisis modal espectral asume que las propiedades modales de la estructura son lineales y que las formas modales se pueden superponer linealmente para obtener la respuesta total de la estructura. En estructuras altamente no lineales, este supuesto puede no ser válido.

b) Sensibilidad a la selección de modos: La precisión del análisis modal espectral depende en gran medida de la selección adecuada de los modos de vibración a considerar. Una mala selección puede conducir a resultados inexactos, especialmente en estructuras con modos de vibración significativamente diferentes.

c) Limitaciones en estructuras con múltiples direcciones de excitación: El análisis modal espectral puede tener limitaciones en estructuras con múltiples direcciones de excitación sísmica, ya que solo considera la respuesta en las direcciones modales principales.

d) No considera la interacción entre modos: El análisis modal espectral no tiene en cuenta la interacción entre los modos de vibración, lo que puede ser importante en estructuras con modos cercanos en frecuencia.

2.2.2. Parámetros de sitio. - De acuerdo a la Norma de Diseño Sismorresistente E030, los factores de zona sísmica, uso y suelo son los indicados en las tablas I, II y III.

Factor de zona (Z)

Zona	Factor Z
3	0.35

Tabla I. Factor de zona de la edificación.

Factor de uso (U)

Categoría	Descripción	Factor U
Edificaciones Comunes "C"	Vivienda Multifamiliar	1,0

Tabla II. Categoría de la edificación.

Factor de suelo (S)

Factor de suelo "S"	S 3
Z3	1,2

Tabla III. Factor de suelo de la edificación

2.2.3. Aceleración espectral

$$S_a = \frac{Z \cdot U \cdot C \cdot S}{R} \cdot g$$

Donde:

Z: Factor zona

 $Z_3 = 0,35$

U: Factor de uso (Categoría de las edificaciones)	U = 1,00
C: Factor de amplificación sísmica	C = 2,5
S: Factor de suelo	$S_3 = 1,20$
R: Coeficiente de reducción sísmica (sistema dual	$R_x = R_y = 7$
g: Gravedad	g = 9.71 m/s2

Aceleración espectral

$$S_{ax} = S_{ay} = \frac{0.35 * 1,00 * 2.5 * 1,20}{7} * 9.71 \frac{m}{s2}$$

 $S_{ax} = S_{ay} = 1.457$

Figura I.- Espectro de aceleración.

Luego de la realización del análisis sísmico dinámico modal espectral, procedemos a realizar la verificación de las irregularidades en altura y planta, de acuerdo a la Norma de Diseño Sismorresistente E030.

2.2.4. Irregularidades en altura

Irregularidad de rigidez – piso blando:

Piso Blando en X-X (0.75)						
Table:	Story Stiffn	ess		Irregularida	d de Rigidez	
Story	Stiffness X	Rigidez lateral de entrepiso (ki)	70% x ki	Irregularidad	80% x (promedio ki)	Irregularidad
	tonf/m	tonf/m	tonf/m	no/si	tonf	no/si
tanque elevado	12705.986	12705.986	8894.1902	NO existe	10164.7888	NO existe
10° piso	74036.909	61330.923	42931.6461	NO existe	29614.7636	NO existe
9° piso	125146.214	51109.305	35776.5135	SI existe	33372.3237	SI existe
8° piso	154455.762	29309.548	20516.6836	SI existe	37799.9403	SI existe
7° piso	172004.082	17548.32	12283.824	NO existe	26124.5795	SI existe
6° piso	184447.113	12443.031	8710.1217	NO existe	15813.5731	SI existe
5° piso	195509.808	11062.695	7743.8865	NO existe	10947.7456	NO existe
4° piso	208647.885	13138.077	9196.6539	NO existe	9771.6808	NO existe
3° piso	227845.995	19198.11	13438.677	NO existe	11573.0352	NO existe
2° piso	255501.812	27655.817	19359.0719	NO existe	15997.8677	NO existe
1° piso	282049.82	26548.008				

Tabla IV. Verificación de la irregularidad de rigidez sísmica en "X".

Piso Blando en Y-Y (0.75)						
Table: Story St	iffness		Irregularidad de Rigidez			
		Rigidez			80% x	
Story	Stiffness Y	lateral de	70% x ki	Irregularidad	(promedio	Irregularidad
		entrepiso (ki)			ki)	
	tonf/m	tonf/m	tonf/m	No/Si	tonf	No/Si
Tanque elevado	8995.484	8995.484	6296.839	NO existe	5037.471	NO existe
10° Piso	58009.13	49013.646	34309.552	NO existe	16242.556	NO existe
9° Piso	101295.681	43286.551	30300.586	SI existe	18908.527	NO existe
8° Piso	129979.17	28683.489	20078.442	NO existe	22583.621	SI existe
7° Piso	150975.844	20996.674	14697.672	NO existe	17353.787	SI existe
6° Piso	168196.584	17220.74	12054.518	NO existe	12488.169	NO existe
5° Piso	183660.449	15463.865	10824.706	NO existe	10020.505	NO existe
4° Piso	199652.92	15992.471	11194.73	NO existe	9086.388	NO existe
3° Piso	222126.009	22473.089	15731.162	NO existe	10066.826	NO existe
2° Piso	251961.555	29835.546	20884.882	NO existe	12749.54	NO existe
1° Piso	287288.179	35326.624				

Tabla V. Verificación de la irregularidad de rigidez sísmica en "Y".

Realizada las verificaciones se determina que la estructura no presenta irregularidad por piso blando por lo cual le corresponde por norma, una estimación de valor de:

$I_a = 1$

Irregularidad de resistencia - piso débil:

	Piso Débil en X-X (0.75)					
	Table: S	tory Stiffness	Irregularida	ndes de Resistencia		
Story	Story Shear X Resistencia de Entrepiso (ri)			Irregularidad		
	tonf	tonf/m	tonf/m	No/Si		
Tanque elevado	9.539	9.539	7.6312	NO existe		
10° Piso	75.8323	75.8323	60.6658	NO existe		
9° Piso	151.8801	151.8801	121.5041	NO existe		
8° Piso	218.6852	218.6852	174.9482	NO existe		
7° Piso	277.1993	277.1993	221.7594	NO existe		
6° Piso	327.8672	327.8672	262.2938	NO existe		
5° Piso	370.8733	370.8733	296.6986	NO existe		
4° Piso	406.1565	406.1565	324.9252	NO existe		
3° Piso	433.4499	433.4499	346.7599	NO existe		
2° Piso	452.532	452.532	362.0256	NO existe		
1° Piso	463.4632	463.4632				

Tabla VI. Verificación de la irregularidad de piso débil en "X"

Piso Débil EN X-X (0.75)					
	Table: S	tory Stiffness	Irregularida	ndes de Resistencia	
Story	Shear Y	Resistencia de Entrepiso (Ri)	80% x Ri	Irregularidad	
	tonf	tonf/m	tonf/m	No/Si	
Tanque elevado	9.539	9.539	7.6312	NO existe	
10° Piso	75.8323	75.8323	60.6658	NO existe	
9° Piso	151.8801	151.8801	121.5041	NO existe	
8° Piso	218.6852	218.6852	174.9482	NO existe	
7° Piso	277.1993	277.1993	221.7594	NO existe	
6° Piso	327.8672	327.8672	262.2938	NO existe	
5° Piso	370.8733	370.8733	296.6986	NO existe	
4° Piso	406.1565	406.1565	324.9252	NO existe	
3° Piso	433.4499	433.4499	346.7599	NO existe	
2° Piso	452.532	452.532	362.0256	NO existe	
1° Piso	463.4632	463.4632			

Tabla VII. Verificación de la irregularidad de piso débil en "Y"

De la verificación la edificación el sistema estructural es discontinuo en los pisos 1 y 2 y el resto de pisos es típico, se deduce que, no presenta irregularidad por piso débil, por lo cual le corresponde por norma el valor de:

 $I_{a} = 1$

Irregularidad de masa o peso:

	Irregularidad Estructural en Altura				
Tabl	le: Story Forces		Irregularidad de N	Masa o Peso (0.90)	
Story	Р	Peso/nivel	1.5 x Peso/nivel	Irregularidad	
	tonf	tonf	tonf	No/Si	
Tanque elevado	64.918	64.918			
10° Piso	458.4575	393.5395			
9° Piso	929.2815	470.824	706.236	NO existe	
8° Piso	1400.1055	470.824	706.236	NO existe	
7° Piso	1870.9294	470.8239	706.2359	NO existe	
6° Piso	2341.7534	470.824	706.236	NO existe	
5° Piso	2812.5774	470.824	706.236	NO existe	
4° Piso	3283.4014	470.824	706.236	NO existe	
3° Piso	3754.2254	470.824	706.236	NO existe	
2° Piso	4230.1074	475.882	713.823	NO existe	
1° Piso	4746.3555	516.2481	774.3722	NO existe	
Sótano 01	5425.8409	679.4854			
Sótano 02	6166.6046	740.7637			
		4746.3555			

Tabla VIII. Verificación de irregularidades de masa

Realizada las verificaciones se determina que la estructura no presenta irregularidades por masa o peso, por lo cual le corresponde por norma, una estimación de valor de:

 $I_{a} = 1$

Irregularidad geométrica vertical:

De la verificación la edificación el sistema estructural es discontinuo en los pisos 1 y 2 y el resto de pisos es típico, se deduce que, no presenta irregularidad geométrica vertical, por lo cual le corresponde por norma el valor de:

 $I_{a} = 1$

Discontinuidad de los sistemas resistentes:

De la verificación la edificación el sistema estructural es discontinuo en los pisos 1 y 2 y el resto de pisos es típico, se deduce que, no presenta irregularidad en los sistemas resistentes, por lo cual le corresponde por norma el valor de:

 $I_{a} = 1$

2.2.5. Irregularidades en planta. -

Irregularidad torsional:

Table	e: Diafragma Deriva máxima	a/media	I. Torsional	I. Torsional Extrema
Story	Desviación Máxima	Relación	Irregularidad	Irregularidad
			>1.3	>1.5
10° Piso	0.0023	1.186	NO existe	NO existe
9° Piso	0.0027	1.201	NO existe	NO existe
8° Piso	0.0032	1.218	NO existe	NO existe
7° Piso	0.0037	1.235	NO existe	NO existe
6° Piso	0.0042	1.249	NO existe	NO existe
5° Piso	0.0045	1.26	NO existe	NO existe
4° Piso	0.0046	1.27	NO existe	NO existe
3° Piso	0.0046	1.276	NO existe	NO existe
2° Piso	0.0042	1.28	NO existe	NO existe
1° Piso	0.0031	1.266	NO existe	NO existe

Tabla IX. Verificación de la irregularidad torsional sismo en "X"

Torsión en Y-Y						
Table:	Diafragma Deriva máxima/mo	edia	I. Torsional	I. Torsional Extrema		
Story	Desviación Máxima	Ratio	Irregularidad	Irregularidad		
			>1.3	>1.5		
10° Piso	0.003	1.021	NO existe	NO existe		
9° Piso	0.0034	1.008	NO existe	NO existe		
8° Piso	0.0038	1	NO existe	NO existe		
7° Piso	0.0041	1.005	NO existe	NO existe		
6° Piso	0.0044	1.01	NO existe	NO existe		
5° Piso	0.0046	1.014	NO existe	NO existe		
4° Piso	0.0047	1.02	NO existe	NO existe		
3° Piso	0.0046	1.03	NO existe	NO existe		
2° Piso	0.0042	1.046	NO existe	NO existe		

Memoria Investigaciones en Ingeniería, núm. 26 (2024). pp. 158-187 https://doi.org/10.36561/ING.26.10 ISSN 2301-1092 • ISSN (en línea) 2301-1106 – Universidad de Montevideo, Uruguay

1° Piso	0.0031	1.08	NO existe	NO existe

Tabla X. Verificación de la irregularidad torsional sismo en "Y"

Irregularidad por esquinas entrantes:

Debido a las diferentes dimensiones en planta que presenta nuestra edificación no se presenta esquinas entrantes, por lo cual le corresponde por norma una estimación de valor de:

 $I_{p} = 1,00$

Irregularidad por discontinuidad de diafragma:

El presente proyecto no cuenta con aberturas significativas en las losas y estas aberturas son constantes a partir de piso 3, por lo cual no presenta irregularidad por discontinuidad de diafragma, por lo cual le corresponde por norma una estimación de valor de:

 $I_{\rm p} = 1,00$

Irregularidad por sistemas no paralelos:

El presente proyecto por su geometría no cuenta con irregularidades por sistemas no paralelos, por lo cual le corresponde por norma una estimación de valor de:

$$I_{\rm p} = 1,00$$

Posterior de la realización de las verificaciones de las diferentes irregularidades tanto en altura y planta, así como en sismo dinámico "X" e "Y", se obtiene como resultado que la edificación es regular en altura y regular en planta, de los diferentes valores obtenidos se deberá tomar los menores y se obtendrá el coeficiente de reducción sísmica (R):

$$R = R_0 I_a$$
. $I_P = 7 \times 1 \times 1 = 7.00$

3. Análisis dinámico del edificio con suposición de base fija

3.1 Modos de vibración. -

	Modos de Vibración					
ТА	BLE: Mod	al Participat	ting Mass Ra	tios		
Case	Mode	Period	UX	UY		
Modal	1	0.639	0.0015	0.7214		
Modal	2	0.593	0.4645	0.0004		
Modal	3	0.51	0.2666	0.001		
Modal	4	0.18	0.0005	0.1282		
Modal	5	0.174	0.0636	0.0002		
Modal	6	0.15	0.0591	0.003		
Modal	7	0.09	0.001	0.0281		
Modal	8	0.088	0.0183	0.0088		
Modal	9	0.077	0.0203	0.003		
Modal	10	0.058	0.0001	0.0129		
Modal	11	0.055	0.0086	0.0029		
Modal	12	0.05	0.0087	0.0014		

Tabla XI. Masas participativas en los modos de vibración

- El primer modo de vibración es de traslación en el eje "X", teniendo un resultado de 0.639 segundos.
- El segundo modo de vibración es de traslación en el eje "Y", teniendo un resultado de 0.593 segundos.
- El tercer modo de vibración es de rotación alrededor del eje "Z", teniendo un resultado de 0.510 segundos.

Figura II.- Planta típica, modos de vibración Software ETABS 2016.

3.2. Distorsión de entrepisos. -

	Distorsión X-X Table: Story Drifts				
Story	Direction	Drift	Desplazamiento Relativo	Desplazamiento	Cumple
			(cm)	cm	> 0.007
Tanque elevado	Х	0.0021	0.504	11.148	SI
10° Piso	Х	0.00228	0.638	10.643	SI
9° Piso	Х	0.00273	0.765	10.006	SI
8° Piso	Х	0.00323	0.906	9.241	SI
7° Piso	Х	0.00373	1.045	8.335	SI
6° Piso	Х	0.00416	1.165	7.291	SI
5° Piso	Х	0.00448	1.255	6.126	SI
4° Piso	Х	0.00465	1.301	4.871	SI
3° Piso	Х	0.0046	1.287	3.57	SI
2° Piso	Х	0.00425	1.19	2.282	SI
1° Piso	Х	0.00312	1.092	1.092	SI

Tabla XII. Distorsión de entrepisos en "X".

	Distorsión Y-Y						
	Table: Story Drifts						
Story	Drift	Label	Desplazamiento Relativo (cm)	Desplazamiento	Cumple		
				cm	> 0.007		
Tanque elevado	0.003118	105	0.748	12.164	SI		
10° Piso	0.003005	16	0.841	11.416	SI		
9° Piso	0.003382	162	0.947	10.575	SI		
8° Piso	0.003758	162	1.052	9.628	SI		
7° Piso	0.004142	111	1.16	8.575	SI		
6° Piso	0.004443	111	1.244	7.416	SI		
5° Piso	0.004633	111	1.297	6.172	SI		
4° Piso	0.004686	111	1.312	4.874	SI		
3° Piso	0.004576	111	1.281	3.562	SI		
2° Piso	0.00423	167	1.184	2.281	SI		
1° Piso	0.003133	167	1.097	1.097	SI		

Tabla XIII. Distorsión de entrepisos en "Y".

Figura III.- Distorsiones de entrepisos en X e Y Software ETABS 2016

• Se observa que cumple con las distorsiones de entrepiso para el sismo en las direcciones "X" e "Y", siendo su valor menor al indicado en la tabla 11 de la Norma de Diseño Sismorresistente E.030.

3.3. Cortante dinámico mínimo

-	Cortante Estático	Cortante Dinámico	FA
X	711.953	463.463	1.229
Y	711.953	555.759	1.025

Tabla XIV. Factor de amplificación del cortante dinámico en ambas direcciones.

De acuerdo con el artículo 29.4.1. se debe de realizar la verificación para que las estructuras regulares alcancen por lo menos el 80% del cortante estático y para estructuras irregulares, no debe de ser menor que el 90%.

4. Análisis dinámico del edificio con Interacción Suelo-Estructura. -

4.1. Consideraciones para el diseño. - Para el presente cálculo del modelo dinámico de la edificación, se debe de tener en cuenta las diferentes características, así como las del suelo.

Características de la edificación

- Resistencia a la compresión del concreto f'c = 2800 Ton/m2
 Módulo de elasticidad del concreto Ec = 2509980 Ton/m2
- Coeficiente de Poisson del concreto
- Losa de techo aligerada de espesor
- Platea de cimentación con dimensiones 26 m x18 m x1.2
- Profundidad de desplante

$$\label{eq:mc} \begin{split} \mu_{C} &= 0.2 \\ e &= 0.25 \\ 26 \text{ m x} 18 \text{ m x} 1.15 \text{ m} \\ \text{Mayor a } 1.8 \text{ m} \end{split}$$

Características del suelo

•	Tipo de suelo	arena arcillosa de baja plasticidad
•	Módulo de elasticidad del suelo	Es = 20MPa ó 2000 Ton. m2
•	Densidad del suelo	$ ho_{ m S} = 0.1 { m T.} s^2/m^4$
•	Coeficiente de Poisson del suelo	$\mu_{C}=0.35$
•	Capacidad portante del suelo	$q_a = 1.94 \text{ kg}/cm^2$
•	Pesos por piso:	

NIVEL	PESO (Ton)		
Tanque elevado	64.92		
10° Piso	393.54		
9° Piso	470.82		
8° Piso	470.82		
7° Piso	470.82		
6° Piso	470.82		
5° Piso	470.82		
4° Piso	470.82		
3° Piso	470.82		
2° Piso	475.88		
1° Piso	516.25		
Sótano 01	679.49		
Sótano 02	740.76		
TOTAL	6166.6046		

4.2. Cálculo de masas de la platea. - Las masas traslacionales respecto a los ejes centroidales X, Y, Z y las masas rotacionales respecto a los ejes de contacto con el suelo-platea, indicamos como X', Y', Z'. Se calculan con las siguientes fórmulas.

$$M_{t} = M_{x} = M_{y} = M_{z} = \frac{2.4 * 26 * 18 * 1.15}{9.81} = 131.67 \text{ (T. s}^{2}/\text{m)}$$
$$M_{\phi x'} = 131.67 * \left(\frac{1.15}{2}\right)^{2} + \frac{131.67 * 18^{2}}{12} = 3598.62 \text{ (T. s}^{2}/\text{m)}$$

$$M_{\phi y'} = 131.67 * \left(\frac{1.15}{2}\right)^2 + \frac{131.67 * 26^2}{12} = 7460.93 \text{ (T. s}^2/\text{m)}$$

$$M_{\varphi z'} = \frac{131.67(26^2 + 18^2)}{12} = 10972.48 \text{ (T. s}^2/\text{m)}$$

M _x	My	Mz	Μ _{φx′}	Μ _{φy′}	Μ _{φz′}
$(T. s^2/m)$	$(T. s^2/m)$	$(T. s^2/m)$	$(T. s^2/m)$	$(T. s^2/m)$	$(T. s^2/m)$
131.67	131.67	131.67	3598.62	7460.93	10972.48

Tabla XVI. Masas de la platea.

4.3. Cálculo de coeficientes de rigidez

4.3.1. Modelo dinámico D.D. Barkan – O.A. Savinov. - Para la investigación se utilizó el libro Interacción sísmica suelo-estructura en edificaciones con plateas de cimentación del Dr. Genner Villarreal Castro, asumiendo un valor de:

 $C_o = 0.8 \text{ Kg/cm}^2$ (arena arcillosa de baja plasticidad).

Calculamos la magnitud de la presión estática del suelo "p" para la platea:

$$\rho = \frac{6,166.60 + 2.4 * 26 * 18 * 1.15}{26 * 18} = 15.94 \ \left(\frac{\text{Ton}}{\text{m}^2}\right)$$

Se procede a calcular D_o por la siguiente formula:

$$D_{o} = \frac{1 - \mu}{1 - 0.5\mu} * C_{o} = \frac{1 - 0.35}{1 - 0.5 * 0.35} (800) = 630.30 \left(\frac{\text{Ton}}{\text{m}^{3}}\right)$$

Luego, se calculan los coeficientes $C_x, C_z, C_{\phi x}, C_{\phi y}\,$ por las fórmulas:

$$C_{x} = D_{o} * \left[1 + \frac{2(a+b)}{\Delta * A} \right] * \sqrt{\frac{\rho}{\rho_{o}}}$$

$$C_{x} = 630.30 * \left[1 + \frac{2(26+18)}{1*468} \right] * \sqrt{\frac{15.94}{2}} = 2,113.78 \frac{ton}{m^{3}}$$

$$C_{z} = C_{o} * \left[1 + \frac{2(a+b)}{\Delta * A} \right] * \sqrt{\frac{\rho}{\rho_{o}}}$$

$$C_{z} = 800 * \left[1 + \frac{2(26+18)}{1*468} \right] * \sqrt{\frac{15.94}{2}} = 2,682.88 \frac{ton}{m^{3}}$$

$$C_{\phi x} = C_{o} * \left[1 + \frac{2(a+3b)}{\Delta * A} \right] * \sqrt{\frac{\rho}{\rho_{o}}}$$

$$C_{\phi x} = 800 * \left[1 + \frac{2(26+3*18)}{1*468} \right] * \sqrt{\frac{15.94}{2}} = 3,030.30 \frac{ton}{m^{3}}$$

$$C_{\phi y} = C_{o} * \left[1 + \frac{2(b+3a)}{\Delta * A} \right] * \sqrt{\frac{\rho}{\rho_{o}}}$$

$$C_{\phi y} = 800 * \left[1 + \frac{2(18+3*26)}{1*468} \right] * \sqrt{\frac{15.94}{2}} = 3,184.71 \frac{ton}{m^{3}}$$

Memoria Investigaciones en Ingeniería, núm. 26 (2024). pp. 158-187 https://doi.org/10.36561/ING.26.10 ISSN 2301-1092 • ISSN (en línea) 2301-1106 – Universidad de Montevideo, Uruguay Ahora se determinan los coeficientes de rigidez K_x , K_y , K_z , $K_{\phi x}$, $K_{\phi y}$ con las siguientes fórmulas:

$$K_{x} = K_{y} = C_{x} * A = 2113.78 * 26 * 18 = 989,249.27 \left(\frac{1}{m}\right)$$

$$K_{z} = C_{z} * A = 2,682.88 * 26 * 18 = 1,255,585.61 \left(\frac{T}{m}\right)$$

$$K_{\phi x} = C_{\phi x} * I_{x} = 3,030.30 * \frac{26 * 18^{3}}{12} = 38,290,844.63 (T.m)$$

$$K_{\phi y} = C_{\phi y} * I_{y} = 3,184.71 * \frac{18 * 26^{3}}{12} = 83,961,642.10 (T.m)$$

4.3.2. Modelo dinámico Norma Rusa SNIP 2.02.05-87. - El coeficiente de compresión elástica uniforme lo calculamos con la siguiente fórmula:

$$C_z = b_o * E * \left(1 + \sqrt{\frac{A_{10}}{A}}\right) = 1.2 * 2000 * \left(1 + \sqrt{\frac{10}{468}}\right) = 2750.82 \frac{ton}{m^3}$$

 \checkmark Si b_o = 1.2 (Arenas arcillosas)

$$\checkmark$$
 Si A₁₀ = 10 m²

Luego, determinamos los coeficientes de desplazamiento elástico uniforme, compresión elástica no uniforme y desplazamiento elástico no uniforme y lo calculamos con las siguientes fórmulas:

$$C_{x} = 0.7 * C_{z} = 0.7 * 2750.823 = 1925.58 \left(\frac{T}{m^{3}}\right)$$

$$C_{\varphi x} = C_{\varphi y} = 2 * C_{z} = 2 * 2750.823 = 5501.65 \left(\frac{T}{m^{3}}\right)$$

$$C_{\varphi z} = C_{z} = 2750.82 \left(\frac{T}{m^{3}}\right)$$
Calculamos los coeficientes de rigidez con las siguientes fórmulas:

$$K_{x} = K_{y} = C_{x} * A = 1925.58 * 468 = 901,169.68 \left(\frac{T}{m}\right)$$

$$K_{z} = C_{z} * A = 2750.82 * 468 = 1,287,385.26 \left(\frac{T}{m}\right)$$

$$K_{\varphi x} = C_{\varphi x} * I_{x} = 5501.65 * \frac{26 * 18^{3}}{12} = 69,518,804.11 \text{ (Ton. m)}$$

$$K_{\varphi y} = C_{\varphi y} * I_{y} = 5501.65 * \frac{18 * 26^{3}}{12} = 145,045,406.10 \text{ (Ton. m)}$$

$$K_{\varphi z} = C_{\varphi z} * I_{z} = 2750.82 * \left(\frac{18 * 26^{3}}{12} + \frac{26 * 18^{3}}{12}\right) = 107,282,105.10 \text{ (Ton. m)}$$

Ahora determinamos las características de la amortiguación relativa para las vibraciones verticales β_z con la siguiente formula:

$$\beta_z = 2 * \sqrt{\frac{E}{C_z * p_m}} = 2 * \sqrt{\frac{2000}{2750.82 * 19.4}} = 0.387$$

Donde:

$$p_{\rm m} = 1 * 1.94 \left(\frac{\rm kg}{\rm cm^2}\right) = 19.4 \left(\frac{\rm Ton}{\rm m^2}\right)$$

Memoria Investigaciones en Ingeniería, núm. 26 (2024). pp. 158-187 https://doi.org/10.36561/ING.26.10 ISSN 2301-1092 • ISSN (en línea) 2301-1106 – Universidad de Montevideo, Uruguay Luego calculamos las amortiguaciones relativas para las vibraciones rotacionales y verticales con las siguientes fórmulas:

 $\begin{array}{l} \beta_x \ = \ 0.6 * \beta_z \ = \ 0.6 * 0.387 \ = \ 0.232 \\ \beta_{\phi x} \ = \ \beta_{\phi y} \ = \ 0.5 * \beta_z \ = \ 0.5 * 0.387 \ = \ 0.194 \\ \beta_{\phi z} \ = \ 0.3 * \beta_z \ = \ 0.3 * 0.387 \ = \ 0.116 \end{array}$

Posteriormente calculamos las características de amortiguamiento con las siguientes fórmulas:

$$\begin{split} &B_x = B_y = 2 * \beta_x * \sqrt{K_x} * M_x = 2 * 0.232 * \sqrt{901,169.68 * 131.67} \\ &B_x = B_y = 5,061.05 \ (T. s^2/m) \\ &B_z = 2 * \beta_z * \sqrt{K_z} * M_z = 2 * 0.387 * \sqrt{1,287,385.26 * 131.670} \\ &B_z = 10,081.84 \ (T. s^2/m) \\ &B_{\phi x} = 2 * \beta_{\phi x} * \sqrt{K_{\phi x} * M_{\phi x'}} = 2 * 0.194 * \sqrt{69,518,804.11 * 3598.62} \\ &B_{\phi x} = 193,656.32 \ (T. s^2/m) \\ &B_{\phi y} = 2 * \beta_{\phi y} * \sqrt{K_{\phi y} * M_{\phi y'}} = 2 * 0.194 * \sqrt{145,045,406.10 * 7460.93} \\ &B_{\phi y} = 402,773.79 \ (T. s^2/m) \\ &B_{\phi z} = 2 * \beta_{\phi z} * \sqrt{K_{\phi z} * M_{\phi z'}} = 2 * 0.116 * \sqrt{107,282,105.10 * 10972.48} \\ &B_{\phi z} = 252,046.12 \ (T. s^2/m) \end{split}$$

En las presentes tablas se muestra los coeficientes de rigidez y características de amortiguamiento para los dos modelos dinámicos.

Modelo	K _x	Ky	Kz	K _{φx}	K _{φy}	K _{φz}
dinámico	(T / m)					
Barkan	989,249.27	989,249.27	1,255,585.61	38,290,844.63	83,961,642.10	-
Norma Rusa	901,169.68	901,169.68	1,287,385.26	69,518,804.11	145,045,406.10	107,282,105.10

Tabla XVII. Coeficientes de rigidez.

Modelo dinámico	$\frac{B_x}{(T.s^2/m)}$	$\frac{B_y}{(T. s^2/m)}$	$\frac{B_z}{(T. s^2/m)}$	$\frac{B_{\phi x}}{(T. s^2/m)}$	$\frac{B_{\phi y}}{(T. s^2/m)}$	$\frac{B_{\phi z}}{(T.s^2/m)}$
Norma Rusa	5,061.05	5,061.05	10,081.84	193,656.32	402,773.79	252,046.12

Tabla XVIII. Coeficientes de amortiguamiento.

4.4. Asignación de punto en el centro de la platea. - Se realiza la asignación de un punto en el centroide de la platea, lugar donde se colocarán las masas calculadas. Luego, se le asignará un resorte con los coeficientes de rigidez calculados, estos simulan las características elásticas del suelo.

4.4.1. Modelo Dinámico D.D. Barkan - O.A. Savinov

Figura V.- Asignación de coeficientes de rigidez

4.4.2. Modelo Dinámico Norma Rusa SNIP 2.02.05-87

Figura VI. - Asignación de masas

Figura VII.- Asignación de coeficientes de rigidez

5. Análisis y discusión de resultados

5.1. Periodos de vibración. - Como se muestra en la tabla XIX de comparación de periodos de los modelos utilizados y esta a su vez se encuentra graficada en la figura VIII, los periodos se han incrementado en los modelos Barkan y Norma Rusa. Cabe recordar que en estos dos se ha considerado la flexibilidad del suelo de fundación, en el modo 1 se puede observar que el modelo empotrado tiene un periodo de 0.639 segundos, el modelo Barkan tiene un periodo de 0.674 segundos y el modelo de la Norma Rusa, un periodo de 0.667 segundos.

Mada	Co	mparación de Per	iodos
111000 -	Empotrado	Barkan	Norma Rusa
1	0.639	0.674	0.667
2	0.593	0.612	0.608
3	0.51	0.522	0.52
4	0.18	0.18	0.18
5	0.174	0.174	0.174
6	0.15	0.15	0.15
7	0.09	0.09	0.09
8	0.088	0.088	0.088
9	0.077	0.077	0.077
10	0.058	0.058	0.058
11	0.055	0.055	0.055
12	0.05	0.05	0.05
13	0.043	0.043	0.043
14	0.041	0.041	0.041
15	0.038	0.038	0.038
16	0.035	0.035	0.035
17	0.032	0.032	0.032
18	0.029	0.029	0.029
19	0.028	0.028	0.028
20	0.026	0.026	0.026
21	0.024	0.024	0.024
22	0.023	0.023	0.023
23	0.023	0.023	0.023
24	0.022	0.022	0.022
25	0.02	0.02	0.02
26	0.02	0.02	0.02

В.	Quispe,	Е.	Carcausto,	G.	Villarreal
----	---------	----	------------	----	------------

27	0.02	0.02	0.02
28	0.02	0.02	0.02
29	0.018	0.018	0.018
30	0.018	0.018	0.018
31	0.018	0.018	0.018
32	0.018	0.018	0.018
33	0.017	0.017	0.017
34	0.017	0.017	0.017
35	0.016	0.016	0.016
36	0.013	0.015	0.015

Tabla XIX. Comparación de periodos de los modelos dinámicos.

Figura VIII.- Comparación de periodos con los modos de vibración.

5.2. Desplazamientos.

5.2.1 Modelo de suposición de base fija. - Se observa un desplazamiento máximo de 11.148 cm en la dirección "X", y un desplazamiento máximo de 11.945 cm en dirección "Y".

Dirección X-X		Dirección Y-Y	
Pisos	Desplazamiento (cm)	Pisos	Desplazamiento (cm)
Tanque elevado	11.148	Tanque elevado	11.945
10° Piso	10.643	10° Piso	11.197
9° Piso	10.006	9° Piso	10.355
8° Piso	9.241	8° Piso	9.408
7° Piso	8.335	7° Piso	8.356
6° Piso	7.291	6° Piso	7.196
5° Piso	6.126	5° Piso	5.952
4° Piso	4.871	4° Piso	4.655
3° Piso	3.570	3° Piso	3.343
2° Piso	2.282	2° Piso	2.062
1° Piso	1.092	1° Piso	0.877

Tabla XX. Desplazamientos modelo de suposición de base fija

5.2.2 Modelo dinámico D.D. Barkan – O.A. Savinov. - Se observa un desplazamiento máximo de 12.684 cm en la dirección "X", y un desplazamiento máximo de 13.604 cm en dirección "Y".

Dirección X-X		Dirección Y-Y	
Pisos	Desplazamiento (cm)	Pisos	Desplazamiento (cm)
Tanque elevado	12.684	Tanque elevado	13.604
10° Piso	12.067	10° Piso	12.735
9° Piso	11.300	9° Piso	11.753
8° Piso	10.399	8° Piso	10.667
7° Piso	9.349	7° Piso	9.474
6° Piso	8.154	6° Piso	8.174
5° Piso	6.833	5° Piso	6.792
4° Piso	5.421	4° Piso	5.359
3° Piso	3.964	3° Piso	3.914
2° Piso	2.528	2° Piso	2.505
1° Piso	1.207	1° Piso	1.202

Tabla XXI. Desplazamientos modelo D.D. Barkan – O.A. Savinov.

5.2.3 Modelo Dinámico Norma Rusa SNIP 2.02.05-87. - Se observa un desplazamiento máximo de 12.416 cm en la dirección "X", y un desplazamiento máximo de 13.311 cm en dirección "Y".

Dirección X-X		Dirección Y-Y	
Pisos	Desplazamiento (cm)	Pisos	Desplazamiento (cm)
Tanque elevado	12.416	Tanque elevado	13.311
10° Piso	11.820	10° Piso	12.467
9° Piso	11.078	9° Piso	11.514
8° Piso	10.201	8° Piso	10.457
7° Piso	9.178	7° Piso	9.293
6° Piso	8.009	6° Piso	8.022
5° Piso	6.715	5° Piso	6.668
4° Piso	5.330	4° Piso	5.262
3° Piso	3.899	3° Piso	3.844
2° Piso	2.488	2° Piso	2.461
1° Piso	1.188	1° Piso	1.181

Tabla XXII. Desplazamientos modelo Norma Rusa 2.02.05-87.

En la Figura IX se observan los desplazamientos en X, de los diferentes modelos utilizados, teniendo mayor desplazamiento el modelo Barkan a comparación del modelo Empotrado y el modelo de la Norma Rusa.

Figura IX.- Comparación de desplazamientos con los modelos dinámicos en "X"

Memoria Investigaciones en Ingeniería, núm. 26 (2024). pp. 158-187 https://doi.org/10.36561/ING.26.10 ISSN 2301-1092 • ISSN (en línea) 2301-1106 – Universidad de Montevideo, Uruguay En la Figura X se observa los desplazamientos en Y, de los diferentes modelos utilizados, teniendo mayor desplazamiento el modelo Barkan a comparación del modelo Empotrado y el modelo de la Norma Rusa.

Figura X.- Comparación de desplazamientos con los modelos dinámicos en "Y"

5.3. Distorsiones de entrepisos. -

5.3.1 Modelo de suposición de base fija.

Dirección X-X				
Та	ble: Stor	y Drifts		
Story	Drift	Lim 0.007	Cumple	
Tanque elevado	0.00210	0.007	SI	
10° Piso	0.00228	0.007	SI	
9° Piso	0.00273	0.007	SI	
8° Piso	0.00323	0.007	SI	
7° Piso	0.00373	0.007	SI	
6° Piso	0.00416	0.007	SI	
5° Piso	0.00448	0.007	SI	
4° Piso	0.00465	0.007	SI	
3° Piso	0.00460	0.007	SI	
2° Piso	0.00425	0.007	SI	
1° Piso	0.00312	0.007	SI	

Tabla XXIII. Distorsión en "X" modelo de suposición de base fija.

Dirección Y-Y					
Та	ble: Stor	y Drifts			
Story	Drift	Lim 0.007	Cumple		
Tanque elevado	0.00312	0.007	SI		
10° Piso	0.00301	0.007	SI		
9° Piso	0.00338	0.007	SI		
8° Piso	0.00376	0.007	SI		
7° Piso	0.00414	0.007	SI		
6° Piso	0.00444	0.007	SI		
5° Piso	0.00463	0.007	SI		
4° Piso	0.00469	0.007	SI		

Memoria Investigaciones en Ingeniería, núm. 26 (2024). pp. 158-187 https://doi.org/10.36561/ING.26.10 ISSN 2301-1092 • ISSN (en línea) 2301-1106 – Universidad de Montevideo, Uruguay

3° Piso	0.00458	0.007	SI
2° Piso	0.00423	0.007	SI
1° Piso	0.00313	0.007	SI

Tabla XXIV. Distorsión en "Y" modelo de suposición de base fija.

Se aprecia en las tablas XXIII y XXIV que la distorsión máxima se da en el 4° piso con una distorsión de 0.00448 en la dirección X y 0.00469 en la dirección Y, cumpliendo en ambas direcciones con la distorsión máxima permitida por la Norma de Diseño Sismorresistente E030.

Dirección X-X						
Та	Table: Story Drifts					
Story	Story Drift Lim 0.007 Cump					
Tanque elevado	0.00257	0.007	SI			
10° Piso	0.00274	0.007	SI			
9° Piso	0.00322	0.007	SI			
8° Piso	0.00375	0.007	SI			
7° Piso	0.00427	0.007	SI			
6° Piso	0.00472	0.007	SI			
5° Piso	0.00505	0.007	SI			
4° Piso	0.00520	0.007	SI			
3° Piso	0.00513	0.007	SI			
2° Piso	0.00472	0.007	SI			
1° Piso	0.00345	0.007	SI			

5.3.2 Modelo dinámico D.D. Barkan - O.A. Savinov.

Tabla XXV. Distorsión en "X" modelo dinámico Barkan.

Dirección Y-Y				
Та	ble: Stor	y Drifts		
Story	Drift	Lim 0.007	Cumple	
Tanque elevado	0.00362	0.007	SI	
10° Piso	0.00351	0.007	SI	
9° Piso	0.00388	0.007	SI	
8° Piso	0.00426	0.007	SI	
7° Piso	0.00464	0.007	SI	
6° Piso	0.00494	0.007	SI	
5° Piso	0.00512	0.007	SI	
4° Piso	0.00516	0.007	SI	
3° Piso	0.00503	0.007	SI	
2° Piso	0.00465	0.007	SI	
1° Piso	0.00344	0.007	SI	

Tabla XXVI. Distorsión en "Y" modelo dinámico Barkan.

Se aprecia en las tablas XXV y XXVI que la distorsión máxima se da en el 4° piso con una distorsión de 0.00520 en la dirección X y 0.00516 en la dirección Y, cumpliendo en ambas direcciones con la distorsión máxima permitida por la Norma de Diseño Sismorresistente E.030

· · · · · · · · · · · · · · · · · · ·	Dirección X-X					
Та	Table: Story Drifts					
Story	Drift	Lim 0.007	Cumple			
Tanque elevado	0.00248	0.007	SI			
10° Piso	0.00265	0.007	SI			
9° Piso	0.00313	0.007	SI			
8° Piso	0.00366	0.007	SI			
7° Piso	0.00417	0.007	SI			
6° Piso	0.00462	0.007	SI			
5° Piso	0.00495	0.007	SI			
4° Piso	0.00511	0.007	SI			
3° Piso	0.00504	0.007	SI			
2° Piso	0.00464	0.007	SI			
1° Piso	0.00340	0.007	SI			

5.3.3 Modelo Dinámico Norma Rusa SNIP 2.02.05-87.

Tabla XXVII. Distorsión en "X" modelo dinámico Norma Rusa

Dirección Y-Y				
Та	ble: Stor	y Drifts		
Story	Drift	Lim 0.007	Cumple	
Tanque elevado	0.00352	0.007	SI	
10° Piso	0.00340	0.007	SI	
9° Piso	0.00378	0.007	SI	
8° Piso	0.00416	0.007	SI	
7° Piso	0.00454	0.007	SI	
6° Piso	0.00484	0.007	SI	
5° Piso	0.00502	0.007	SI	
4° Piso	0.00506	0.007	SI	
3° Piso	0.00494	0.007	SI	
2° Piso	0.00457	0.007	SI	
1° Piso	0.00338	0.007	SI	

Tabla XXVIII Distorsión en "Y" modelo dinámico Norma Rusa.

Se aprecia en las tablas XXVII y XXVIII que la distorsión máxima se da en el 4° piso con una distorsión de 0.00511 en la dirección X y 0.00506 en la dirección Y, cumpliendo en ambas direcciones con la distorsión máxima permitida por la Norma de Diseño Sismorresistente E.030

Figura XI.- Comparación de distorsiones con los modelos dinámicos en "X"

Figura XII.- Comparación de distorsiones con los modelos dinámicos en "Y"

Como se aprecia en las figuras XI y XII, las distorsiones de entrepiso en X e Y, siendo el mayor valor con el modelo dinámico Barkan, seguido de la Norma Rusa y el menor valor con el modelo empotrado en la base.

Dirección	Modelo Empotrado (tonf)	Modelo Barkan (tonf)	Modelo Norma Rusa (tonf)
Х	463.4632	489.5136	484.2614
Y	555.7586	554.0225	554.3393

5.4. Fuerzas cortantes. - Se realiza la comparación de resultados de fuerzas cortantes de los modelos analizados.

Tabla XXIX. Fuerza Cortante.

Figura XIII. Comparación de las fuerzas cortantes con los modelos dinámicos en "X"

En la Figura XIII se aprecia un incremento de la fuerza cortante en la dirección X en el modelo Barkan y en el modelo de la Norma Rusa.

Figura XIV.- Comparación de las fuerzas cortantes con los modelos dinámicos en "Y"

En la Figura XIV se aprecia una reducción de la fuerza cortante en la dirección Y en el modelo Barkan y en el modelo de la Norma Rusa.

5.5. Momento flector

Dirección	Modelo Empotrado (tonf)	Modelo Barkan (tonf)	Modelo Norma Rusa (tonf)
Х	468.6993	346.0116	371.7405
Y	448.3551	329.5101	354.5755

Tabla XXX. Momento flector.

Figura XV.- Comparación de momentos con los modelos dinámicos en "X"

En la Figura XV se aprecia una reducción de momentos en la dirección X en los modelos dinámicos Barkan y Norma Rusa, a comparación con el modelo de suposición de base fija.

Figura XVI.- Comparación de momentos con los modelos dinámicos en "Y"

En la Figura XVI se aprecia una reducción de momentos en la dirección Y en los modelos dinámicos Barkan y Norma Rusa, a comparación con el modelo de suposición de base fija.

6. Conclusiones

- Se concluye que, al realizar un análisis de interacción suelo-estructura con los modelos dinámicos Barkan y Norma Rusa, los periodos fundamentales Tx y Ty se incrementan, esto frente a un análisis con la suposición de base fija.
 - Se obtiene que los periodos Tx en el modelo empotrado presenta un valor de 0.593 seg., mientras que en el modelo Barkan es de 0.612 segundos y en el modelo Norma Rusa es de 0.608 segundos.
 - Se obtiene que los periodos Ty en el modelo empotrado presenta un valor de 0.639 seg., mientras que en el modelo Barkan es de 0.674 segundos y en el modelo Norma Rusa es de 0.667 segundos.
- Se concluye que, al realizar un análisis de interacción suelo-estructura con los modelos dinámicos Barkan y Norma Rusa, los desplazamientos en las direcciones X e Y se incrementan, esto frente a un análisis con la suposición de base fija.

- Se obtiene que los desplazamientos máximos en la dirección X, el modelo empotrado presenta 11.148 cm., mientras que en el modelo Barkan es de 12.684 cm. y en el modelo Norma Rusa es de 12.416 cm.
- Se obtiene que, los desplazamientos máximos en la dirección Y, el modelo empotrado presenta 11.945 cm., mientras que en el modelo Barkan es de 13.604 cm. y en el modelo Norma Rusa es de 13.311 cm.
- Se concluye que, al realizar un análisis de interacción suelo-estructura con los modelos dinámicos Barkan y Norma Rusa, las distorsiones máximas en las direcciones X e Y se incrementan, esto frente a un análisis con la suposición de base fija.
 - Se obtiene que, la deriva máxima en la dirección X se da en el 4º Piso, el modelo empotrado presenta 0.00465, mientras que en el modelo Barkan es de 0.00520 y en el modelo Norma Rusa es de 0.00511.
 - Se obtiene que, la deriva máxima en la dirección Y, se da en el 4° Piso, el modelo empotrado presenta 0.00469, mientras que en el modelo Barkan es de 0.00516 y en el modelo Norma Rusa es de 0.00506.
- Se concluye que, al realizar un análisis de interacción suelo-estructura con los modelos dinámicos Barkan y Norma Rusa, las fuerzas cortantes en la base Vx se incrementan y las fuerzas cortantes Vy disminuyen, esto frente a un análisis con la suposición de base fija.
 - Se obtiene que, las fuerzas cortantes en la base en la dirección X, el modelo empotrado presenta 463.4632 tonf, mientras que en el modelo Barkan es de 489.5136 tonf y en el modelo Norma Rusa es de 484.2614 tonf.
 - Se obtiene que, las fuerzas cortantes en la base en la dirección Y, el modelo empotrado presenta 555.7586 tonf, mientras que en el modelo Barkan es de 554.0225 tonf y en el modelo Norma Rusa es de 554.3393 tonf.
- Se concluye que, teniendo en cuenta las fuerzas cortantes en la base mencionados líneas arriba, el sistema estructural la cual conforma la presente edificación es de un Sistema Dual y en todos los modelos analizados las cortantes en la base de las placas en las direcciones X e Y, son mayores al 60% y menores al 80%.
 - Se obtiene que, las fuerzas cortantes de las placas en la base en la dirección X, el modelo empotrado presenta una cortante en las placas de 343.6504 tonf siendo un 74.148 % respecto a la cortante principal de 463.4632 tonf.
 - Se obtiene que, las fuerzas cortantes de las placas en la base en la dirección Y, el modelo empotrado presenta una cortante en las placas de 334.3892 tonf siendo un 60.168 % respecto a la cortante principal de 555.7586 tonf.
 - Se obtiene que, las fuerzas cortantes de las placas en la base en la dirección X, el modelo Barkan presenta una cortante en las placas de 342.6288 tonf siendo un 69.994 % respecto a la cortante principal de 489.5136 tonf.
 - Se obtiene que, las fuerzas cortantes de las placas en la base en la dirección Y, el modelo Barkan presenta una cortante en las placas de 335.0546 tonf siendo un 60.477 % respecto a la cortante principal de 554.0225 tonf.
 - Se obtiene que, las fuerzas cortantes de las placas en la base en la dirección X, el modelo Norma Rusa presenta una cortante en las placas de 342.7141 tonf siendo un 70.770 % respecto a la cortante principal de 484.2614 tonf.
 - Se obtiene que, las fuerzas cortantes de las placas en la base en la dirección Y, el modelo Norma Rusa presenta una cortante en las placas de 334.7704 tonf siendo un 60.391 % respecto a la cortante principal de 554.3393 tonf.

Referencias

[1] Abanto Oblitas R., Cisneros Meneses L., Gómez Córdova G., Díaz Esquivel C., Rojas Peralta P. (2020). Propuesta preliminar del método de análisis de interacción suelo-estructura para suelos peruanos. Repositorio de Tesis PUCP. Obtenido de https://hdl.handle.net/20.500.12404/18127

[2] Araca F., Gómez L., Cahui A., Martin G. (2020). Influencia de la interacción suelo-estructura en el comportamiento de las viviendas aporticadas con zapatas aisladas en la ciudad de Juliaca. Revista Cientifica de la UCSA, 7(2), 70-81. https://doi.org/http://scielo.iics.una.py/scielo.php?script=sci_arttext&pid=S2409-87522020000200070&lng=es&nrm=iso&tlng=es

[3] Arancibia A. (2020). Estudio del efecto de la interacción suelo-estructura en edificios bajos de albañilería. Repositorio Académico de la Universidad de Chile. https://doi.org/https://repositorio.uchile.cl/handle/2250/177340

[4] Arellano María, Cavallin Johana (2018). Estudio del comportamiento dinámico en edificaciones irregulares considerando interacción suelo-estructura. Revista Ingeniería, 2(2), 28-36. https://doi.org/ https://doi.org/10.33996/revistaingenieria.v2i2.12

[5] Calderin F., Almenarez D., Boada D. (2020). Consideración del fenómeno interacción suelo-estructura en edificio prefabricado. Obtenido de https://www.redalyc.org/journal/1813/181366194007/html/

[6] Castro C., Pérez G. (2020). Análisis de la interacción suelo - estructura estática para una edificación regular de hormigón armado y 3 tipos de suelos. Ecuador: Universidad Politécnica Salesiana. Obtenido de https://dspace.ups.edu.ec/handle/123456789/18193

[7] Falcón N. (2024). Evaluación de la respuesta sísmica de un edificio aporticado considerando la interacción sueloestructura. Obtenido de https://preprints.scielo.org/index.php/scielo/preprint/view/8016/14974

[8] Fernández Limés A., Fernández Lorenzo I., Cobelo Cristiá W. (2023). Influencia de la interacción suelo-estructura estática en edificio de 100 metros de altura. Revista Ingeniería y Desarrollo, 2(2), 213-232. https://doi.org/10.14482/inde.41.02.201.456

[9] García N., Jaramillo Y., Sarmiento P. (2023). Evaluación de la influencia de la interacción suelo - estructura en la respuesta sísmica de una edificación tipo comercial en Ecuador. Guayaquil: Escuela Superior Politécnica del Litoral. Obtenido de https://www.dspace.espol.edu.ec/handle/123456789/59581

[10] Guanchez Edinson (2019). Aspectos sismo-geotécnicos considerados en el diseño de cimentaciones (Parámetros dinámicos e interacción suelo-estructura). Obtenido de Prontubeam: https://www.prontubeam.com/articulos/2019-08-22-Aspectos-sismo-geotecnicos-considerados-en-el-diseno-de-cimentaciones

[11] Hervas D., Villavicencio E. (2021). Influencia de la respuesta estructural en una edificación de 5 pisos de hormigón reforzado resistente a momentos, mediante la interacción suelo-estructura variando el tipo de cimentación, en suelos tipo D. Manabí: Universidad Estatal del Sur de Manabí. Obtenido de https://repositorio.unesum.edu.ec/handle/53000/2725?mode=full

[12] Jines R. (2017). Interacción sísmica suelo-estructura en edificaciones de sistema dual en la ciudad de Moquegua. Universidad Privada de Tacna. Obtenido de https://repositorio.upt.edu.pe/bitstream/handle/20.500.12969/412/Jines-Cabezas-Ruth-Mercedes.pdf?sequence=1

[13] Pinto-Vega Francisco, Ledezma Christian (2019). Interacción suelo-estructura en edificios de gran altura con subterráneos en Santiago, Chile. Obras y proyectos (25), 66-75. https://doi.org/http://dx.doi.org/10.4067/S0718-28132019000100066

[14] Puente D., Vilcamich E., Castro J., Andrade J., Cuadros L. (2023). Interacción suelo-estructura en un edificio con sótanos: consideraciones para el análisis sísmico. Lima: Pontificia Universidad Católica del Perú. Obtenido de https://tesis.pucp.edu.pe/repositorio/handle/20.500.12404/26315

[15] Ramírez Cabrera W., Quispillo Morocho K. (2022). Análisis comparativo de la respuesta estructural y del nivelde desempeño de una edificación de hormigón armado, considerando dos opciones: base rígida e interacción suelo-estructura.UniversidadTécnicadeAmbato.Obtenidode

https://doi.org/https://repositorio.uta.edu.ec/handle/123456789/34107

[16] Reglamento Nacional de Edificaciones (2020). Norma E020 (cargas). Lima: Servicio Nacional de CapacitaciónparalaIndustriadelaConstrucción-SENCICO.Obtenidohttps://drive.google.com/file/d/1g8gduNJSHHRkBp0Ls08sC8pk4Sizucav/view

[17] Reglamento Nacional de Edificaciones (2020). Norma E030 (Diseño sismorresistente). Lima: Servicio Nacional de Capacitación para la Industria de la Construcción – SENCICO. Obtenido de https://drive.google.com/file/d/1W14N6JldWPN8wUZSqWZnUphg6C559bi-/view

[18] Reglamento Nacional de Edificaciones (2020). Norma E050 (Suelos y cimentaciones). Lima: Servicio Nacional de Capacitación para la Industria de la Construcción – SENCICO. Obtenido de https://drive.google.com/file/d/1XdLUkwUqDXsuIQgSbFsJ-J9BTt4u3Hp5/view

[19] Reglamento Nacional de Edificaciones (2020). Norma E.060 (Concreto armado). Lima: Servicio Nacional de Capacitación para la Industria de la Construcción – SENCICO. Obtenido de https://drive.google.com/file/d/19EYUVMgwvm6rDs47GV374avco2ylU5Kz/view

[20] Romero E., Almache L. (2022). Evaluación estructural de la iglesia patrimonial El Tambo considerando base rígida e interacción dinámica suelo-estructura. Cuenca: Universidad Católica de Cuenca. Obtenido de https://dialnet.unirioja.es/servlet/articulo?codigo=9227615

[21] Tena Colunga, A. (2019). Interacción suelo-estructura. Reflexiones sobre su importancia en la respuesta dinámica de estructuras durante sismos. Revista Internacional de Ingeniería de Estructuras, 24(2), 141-165. https://journal.espe.edu.ec/ojs/index.php/riie/article/view/1282

[22] Velaña Carcelén L. (2022). Diseño sismorresistente de una estructura mixta de 4 niveles, con interacción sueloestructura y diagonales rigidizadoras, para uso administrativo, enfocado a un suelo con características tipo E. Ecuador: Universidad Estatal del Sur de Manabí. Obtenido de https://repositorio.unesum.edu.ec/handle/53000/3486

[23] Villarreal Castro, G. (2017). Interacción sísmica suelo-estructura en edificaciones con plateas de cimentación. Lima: Editora & Imprenta Gráfica Norte S.R.L.

[24] Villarreal Castro G. (2020). Interacción suelo estructura en edificaciones con zapatas aisladas. Revista Internacional de Ingeniería de Estructuras, 25(3), 311-332. Obtenido de https://ia801900.us.archive.org/34/items/articulo-13-interaccion-suelo-

estructura/Art%C3%AD culo%2013%20 Interacci%C3%B3n%20 Suelo%20 Estructura.pdf

[25] Villarreal Castro G., Águila Gómez C. (2021). Interacción suelo-estructura y su influencia en la respuesta sísmica de edificios de concreto armado. Revista Internacional de Ingeniería de Estructuras, 25(3), 426-471. Obtenido de https://journal.espe.edu.ec/ojs/index.php/riie/article/view/2336/1775

[26] Villarreal Castro G., Cerna Vásquez M., Espinoza Torres C. (2021). Interacción sísmica suelo-estructura en edificaciones con muros de ductilidad limitada sobre plateas de cimentación. Revista Internacional de Ingeniería de Estructuras, 26(1), 153-178. https://journal.espe.edu.ec/ojs/index.php/riie/article/view/1967

Nota contribución de los autores:

- 1. Concepción y diseño del estudio
- 2. Adquisición de datos
- 3. Análisis de datos
- 4. Discusión de los resultados
- 5. Redacción del manuscrito
- 6. Aprobación de la versión final del manuscrito

BQ ha contribuido en: 1, 2, 3, 4, 5 y 6. EC ha contribuido en: 1, 2, 3, 4, 5 y 6. GV ha contribuido en: 1, 2, 3, 4, 5 y 6.

Nota de aceptación: Este artículo fue aprobado por los editores de la revista Dr. Rafael Sotelo y Mag. Ing. Fernando A. Hernández Gobertti.