M. Vieto-Vega, Y. Moreno-Gonzalez
Memoria Investigaciones en Ingeniería, núm. 27 (2024). pp. 46-59
https://doi.org/10.36561/ING.27.4
ISSN 2301-1092 • ISSN (en línea) 2301-1106 – Universidad de Montevideo, Uruguay 57
[45] D. Cavero, K.-H. Tölle, C. Henze, C. Buxadé, and J. Krieter, "Mastitis detection in dairy cows by application of
neural networks," Livestock Science, vol. 114, no. 2, pp. 280–286, Apr. 2008, doi: 10.1016/j.livsci.2007.05.012.
[46] C. Kamphuis, H. Mollenhorst, J. A. P. Heesterbeek, and H. Hogeveen, "Detection of clinical mastitis with sensor
data from automatic milking systems is improved by using decision-tree induction," Journal of Dairy Science, vol. 93,
no. 8, pp. 3616–3627, Aug. 2010, doi: 10.3168/jds.2010-3228.
[47] S. A. Naqvi, M. T. M. King, R. D. Matson, T. J. DeVries, R. Deardon, and H. W. Barkema, "Mastitis detection
with recurrent neural networks in farms using automated milking systems," Computers and Electronics in Agriculture,
vol. 192, p. 106618, Jan. 2022, doi: 10.1016/j.compag.2021.106618.
[48] H. Motohashi, H. Ohwada, and C. Kubota, "Early Detection Method for Subclinical Mastitis in Auto Milking
Systems Using Machine Learning," in 2020 IEEE 19th International Conference on Cognitive Informatics & Cognitive
Computing (ICCICC), Sep. 2020, pp. 76–83, doi: 10.1109/ICCICC50026.2020.9450258.
[49] S. Ankinakatte, E. Norberg, P. Løvendahl, D. Edwards, and S. Højsgaard, "Predicting mastitis in dairy cows using
neural networks and generalized additive models: A comparison," Computers and Electronics in Agriculture, vol. 99,
pp. 1–6, Nov. 2013, doi: 10.1016/j.compag.2013.08.024.
[50] Y. Wang, X. Kang, Z. He, Y. Feng, and G. Liu, "Accurate detection of dairy cow mastitis with deep learning
technology: a new and comprehensive detection method based on infrared thermal images," animal, vol. 16, no. 10, p.
100646, Oct. 2022, doi: 10.1016/j.animal.2022.100646.
[51] L. Fadul-Pacheco, H. Delgado, and V. E. Cabrera, "Exploring machine learning algorithms for early prediction of
clinical mastitis," *International Dairy Journal*, vol. 119, p. 105051, Aug. 2021, doi: 10.1016/j.idairyj.2021.105051.
[52] M. Khatun et al., "Development of a new clinical mastitis detection method for automatic milking systems,"
Journal of Dairy Science, vol. 101, no. 10, pp. 9385–9395, Oct. 2018, doi: 10.3168/jds.2017-14310.
[53] C. Foditsch et al., "Lameness Prevalence and Risk Factors in Large Dairy Farms in Upstate New York. Model
Development for the Prediction of Claw Horn Disruption Lesions," PLOS ONE, vol. 11, no. 1, p. e0146718, Jan. 2016,
doi: 10.1371/journal.pone.0146718.
[54] F. C. Flower and D. M. Weary, "Gait assessment in dairy cattle," Animal, vol. 3, no. 1, pp. 87–95, Jan. 2009, doi:
10.1017/S1751731108003194.
[55] L. Ózsvári, "Economic Cost of Lameness in Dairy Cattle Herds," Journal of Dairy, Veterinary & Animal
Research, vol. 6, p. 00176, Dec. 2017, doi: 10.15406/jdvar.2017.06.00176.
[56] E. Cha, J. A. Hertl, D. Bar, and Y. T. Gröhn, "The cost of different types of lameness in dairy cows calculated by
dynamic programming," Preventive Veterinary Medicine, vol. 97, no. 1, pp. 1–8, Oct. 2010, doi:
10.1016/j.prevetmed.2010.07.011.
[57] N. Volkmann, B. Kulig, S. Hoppe, J. Stracke, O. Hensel, and N. Kemper, "On-farm detection of claw lesions in
dairy cows based on acoustic analyses and machine learning," Journal of Dairy Science, vol. 104, no. 5, pp. 5921–
5931, May 2021, doi: 10.3168/jds.2020-19206.
[58] S. Shahinfar, M. Khansefid, M. Haile-Mariam, and J. E. Pryce, "Machine learning approaches for the prediction
of lameness in dairy cows," Animal, vol. 15, no. 11, p. 100391, Nov. 2021, doi: 10.1016/j.animal.2021.100391.
[59] D. Warner, E. Vasseur, D. M. Lefebvre, and R. Lacroix, "A machine learning based decision aid for lameness in
dairy herds using farm-based records," Computers and Electronics in Agriculture, vol. 169, p. 105193, Feb. 2020, doi:
10.1016/j.compag.2019.105193.
[60] F. Mavrot, H. Hertzberg, and P. Torgerson, "Effect of gastro-intestinal nematode infection on sheep performance:
A systematic review and meta-analysis," Parasites & Vectors, vol. 8, no. 1, p. 557, Dec. 2015, doi: 10.1186/s13071-
015-1164-z.
[61] A. C. de S. Chagas, O. Tupy, I. B. dos Santos, and S. N. Esteves, "Economic impact of gastrointestinal nematodes
in Morada Nova sheep in Brazil," Revista Brasileira de Parasitologia Veterinária, vol. 31, p. e008722, Aug. 2022,
doi: https://doi.org/10.1590/S1984-29612022044.
[62] Montout, A. X., Bamber, R. S., Lange, D. S., Ndlovu, D. Z., Morgan, E. R., Ioannou, C. C.,
[63] Dowsey, A. W., "Accurate and interpretable prediction of poor health in small ruminants with accelerometers and
machine learning," bioRxiv, Aug 2020, doi: https://doi.org/10.1101/2020.08.03.234203.
[64] Contla Hernández, B., Lopez-Villalobos, N., & Vignes, M. (2021). "Identifying health status in grazing dairy
cows from milk mid-infrared spectroscopy by using machine learning methods." Animals, 11(8), 2154.
[65] Neethirajan, S. (2023). "The significance and ethics of digital livestock farming." AgriEngineering, 5(1), 488-
505.