M. Solar, F. Cisternas Alvarez, J.-P. Villacura, L. Dombrovskaia
Memoria Investigaciones en Ingeniería, núm. 27 (2024). pp. 180-199
https://doi.org/10.36561/ING.27.12
ISSN 2301-1092 • ISSN (en línea) 2301-1106 – Universidad de Montevideo, Uruguay 196
Referencias
[1] Adachi S.H., Henderson M.P. (2015): Application of Quantum Annealing to Training of Deep Neural Networks.
arXiv:1510.06356 https://arxiv.org/abs/1510.06356
[2] Arrasmith, A., Cincio, L., Somma, R. D., Coles, P. J. (2020). Operator sampling for shot-frugal optimization in
variational algorithms.
[3] Bassoli R., Boche H., Deppe C., Ferrara R., Fitzek F.H.P., Janssen G., Saeedinaeeni S.(2021): Quantum
Communication Networks. Foundations in Signal Processing, Communications and Networking. Springer.
https://doi.org/10.1007/978-3-030-62938-0
[4] Bausch, J. (2020). Recurrent Quantum Neural Networks. Advances in Neural Information Processing Systems,
(Eds.) H. Larochelle, M. Ranzato, R. Hadsell, M.F. Balcan, H. Lin, Vol. 33, pp.
1368–1379, Curran Associates, Inc., https://proceedings.neurips.cc/papers/search?q=quantum
[5] Benioff, P. (1980, May). The computer as a physical system: A microscopic quantum mechanical Hamiltonian
model of computers as represented by Turing machines. Journal of Statistical Physics, 22(5), 563-591.
doi:10.1007/BF01011339
[6] Bennett, C. H. (1973). Logical reversibility of computation. IBM Journal of Research and Development, 17(6),
525-532. doi:10.1147/rd.176.0525
[7] Bernstein, D. J., Heninger, N., Lou, P., Valenta, L. (2017). Post-quantum rsa. Cryptology ePrint Archive, Paper
2017/351. https://eprint.iacr.org/2017/351
[8] Brooks, M. (2019, October). Beyond quantum supremacy: the hunt for useful quantum computers. Nature,
574(7776), 19-21. doi:10.1038/d41586-019-02936-3
[9] Buhrman H., Cleve R., Watrous J., de Wolf R.(2001). Quantum Fingerprinting. Physical Review Letters. 87 (16):
167902. doi:10.1103/PhysRevLett.87.167902
[10] Cao, Yudong, Romero, Jonathan, Olson, Jonathan P., Degroote, Matthias, Johnson, Peter D., Kieferová, Mária,
Kivlichan, Ian D., Menke, Tim, Peropadre, Borja, Sawaya, Nicolas P.D., Sim, Sukin, Veis, Libor, Aspuru-Guzik, Alán
(2019): Quantum Chemistry in the Age of Quantum Computing. Chemical Reviews, Vol. 119, No. 19, pp. 10856–
10915, https://doi.org/10.1021/acs.chemrev.8b00803
[11] Caro, M. C., Huang, H.-Y., Ezzell, N., Gibbs, J., Sornborger, A. T., Cincio, L., Holmes, Z. (2022). Out-of-
distribution generalization for learning quantum dynamics.
[12] Cerezo, M., Arrasmith, A., Babbush, R., Benjamin, S. C., Endo, S., Fujii, K., Coles, P. J. (2021, aug). Variational
quantum algorithms. Nature Reviews Physics, 3(9), 625–644. doi:10.1038/s42254-021-00348-9
[13] Cong, I., Choi, S., Lukin, M. D. (2019, aug). Quantum convolutional neural networks. Nature Physics, 15(12),
1273–1278. doi:10.1038/s41567-019-0648-8
[14] Díaz, A., Rodriguez, M., Piattini, M. (2024): Towards a set of metrics for hybrid (quantum/classical) systems
maintainability. Journal of Universal Computer Science, vol. 30, no. 1, pp. 25-48
[15] Feynman, R. P. (1982). Simulating physics with computers. Int. J. Theor. Phys. 21, 467–488 [16] Hubregtsen, T.,
Wierichs, D., Gil-Fuster, E., Derks, P.-J. H. S., Faehrmann, P. K., Meyer, J. J. (2022, oct). Training quantum
embedding kernels on near-term quantum computers. Physical Review A, 106 (4). doi:10.1103/physreva.106.042431