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Summary. - This article corresponds to an extensive review of Quantum Computers. We chose to consider topics 
relevant to quantum computing, such as machine learning, and the deepening of other issues related to cybersecurity. 
We introduce the reader to the basic concepts of quantum computing so that they can easily understand the terms 
mentioned in this review. We analyze different state of the art articles, and we give a summary of the contributions 
made. Finally, we conclude with the analysis of the bibliography, the research centers, the current state of the art, 
surprising results and conclusions. 
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Resumen. - Este artículo corresponde a una revisión extensa (no exhaustiva) de Computación Cuántica. Se eligió 
considerar temas relevantes para la computación cuántica, como el aprendizaje automático, y la profundización de 
otros temas relacionados con la ciberseguridad. Se presenta los conceptos básicos de la computación cuántica para 
comprender los términos mencionados en esta revisión. Se analiza diferentes artículos sobre el estado del arte y se 
entrega un resumen de los aportes realizados. Finalmente, se presentan las conclusiones sobre el análisis de la 
bibliografía, los centros de investigación, el estado actual del arte y resultados. 

Keywords: Aprendizaje Automático Cuántico; Distribución de Claves Cuánticas (QKD); Criptografía Cuántica. 

 

Resumo. - Este artigo corresponde a uma revisão extensa (não exaustiva) da Computação Quântica. Optou-se por 
considerar temas relevantes para a computação quântica, como aprendizado de máquina, e aprofundar outros temas 
relacionados à segurança cibernética. Os conceitos básicos da computação quântica são apresentados para 
compreender os termos mencionados nesta revisão. São analisados diferentes artigos sobre o estado da arte e 
fornecido um resumo das contribuições realizadas. Por fim, são apresentadas as conclusões sobre a análise da 
bibliografia, os centros de investigação, o estado atual da arte e os resultados. 

Palavras-chave: Aprendizado de Máquina Quântica; Distribuição Quântica de Chaves (QKD); Criptografia 
Quântica. 
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1. Introduction. - With certainty it can be stated that today’s computers are much faster than the computers of 70 years 
ago. The computers of that time were large, heavy, with a very limited capacity and processing speed compared to what 
is the standard now a day. We could consider quantum computers to be in this same state, as an emerging technology 
that is still expensive, bulky and with a lot of research potential (15). 
 
The theory of quantum computing points out that its processing speed can be much faster than even the fastest 
supercomputer today. Examples such as Shor’s algorithm with its potential ability to factor large prime numbers in a 
matter of seconds, as opposed to the thousands of years that classical computing could take, are considered signs of the 
advances and development that is to come with quantum computing (14). 
 
This paper explores a range of subjects concerning quantum computing, including quantum computers and 
technologies. It is structured to provide readers with a comprehensive understanding, starting from the basics of 
quantum computing and progressing to cover a wide range of proposed models for quantum computers. Additionally, 
the paper delves into the future prospects and developments of the fields Quantum Machine Learning (QML) and 
Quantum Cryptography, highlighting the immense potential of quantum computing and discussing current 
advancements. 
 
The structure of this paper after this introduction includes a brief overview of Quantum Computing (Quantum 
Computers and Technologies, Quantum Data, Quantum Gates, Noise, Quantum Error Correction Quantum 
Cybersecurity, and Quantum Machine Learning). In the section State of the Art we show the methodology, we describe 
the new works and research, we show a comparative analysis of the latest advances, a bibliographic discussion and we 
show a state of the art timeline jointly with expected or surprising results. The final section summarizes the conclusions 
of this work. 
 
2. Brief overview of Quantum Computing. – 
 
2.1. Quantum Computing. - Quantum computing relies on properties of quantum mechanics to compute problems 
that would be out of reach for classical computers. A Quantum Computer (QC) uses qubits. Qubits are like regular bits 
in a classical computer, but with the added ability to be put into a superposition state and share entanglement with one 
other (26). 
 
A QC works using quantum principles. Quantum principles require a new dictionary of terms to be fully understood, 
terms that include superposition, entanglement, and decoherence. Let’s explain these principles below. 

§ Superposition: Superposition states that, much like waves in classical physics, you can add two or more 
quantum states and the result will be another valid quantum state. Conversely, you can also represent 
every quantum state as a sum of two or more other distinct states. This superposition of qubits gives QCs 
their inherent parallelism, allowing them to process millions of operations simultaneously. 

§ Entanglement: Quantum entanglement occurs when two systems link so closely that knowledge about 
one gives you immediate knowledge about the other, no matter how far away they are. Quantum 
processors can draw conclusions about one particle by measuring another one, Quantum entanglement 
allows QCs to solve complex problems faster. When a quantum state is measured, the wavefunction 
collapses and you measure the state as either a zero or a one. In this known or deterministic state, the qubit 
acts as a classical bit. Entanglement is the ability of qubits to correlate their state with other qubits. 

§ Decoherence: Decoherence is the loss of the quantum state in a qubit. Environmental factors, like 
radiation, can cause the quantum state of the qubits to collapse. A large engineering challenge in 
constructing a QC is designing the various features that attempt to delay decoherence of the state, such as 
building specialty structures that shield the qubits from external fields. 

 
The current state of quantum computing is referred to as the Noisy Intermediate-Scale Quantum (NISQ) era (8), 
characterized by quantum processors containing 50–100 qubits which are not yet advanced enough for fault-tolerance 
or large enough to achieve quantum supremacy, the term NISQ was coined by (32). These processors, which are 
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sensitive to their environment (noisy) and prone to quantum decoherence, are not yet capable of continuous quantum 
error correction. This intermediate scale is defined by the quantum volume, which is based on the moderate number of 
qubits and gate fidelity. 
 
Classical computers perform deterministic classical operations or can emulate probabilistic processes using sampling 
methods. By harnessing superposition and entanglement, QCs can perform quantum operations that are difficult to 
emulate at scale with classical computers. Ideas for leveraging NISQ quantum computing include optimization, 
quantum simulation, cryptography, and Machine Learning (ML). 
 
Notably, QCs are believed to be able to solve many problems quickly that no classical computer could solve in any 
feasible amount of time—a feat known as quantum supremacy. 
 
2.2. QCs and technologies. - A QC is a computer that exploits quantum mechanical phenomena. At small scales, 
physical matter exhibits properties of both particles and waves, and quantum computing leverages this behavior using 
specialized hardware. Classical physics cannot explain the operation of these quantum devices, and a scalable QC 
could perform some calculations exponentially faster than any modern classical. 
 
No one has shown the best way to build a fault-tolerant QC, and multiple companies and research groups are 
investigating different types of qubits. We give a brief example of some of these qubit technologies below. 
 

§ Gate-based ion trap processors: Trapped ion QCs implement qubits using electronic states of charged 
atoms called ions. The ions are confined and suspended above the microfabricated trap using 
electromagnetic fields. Trapped ion-based systems apply quantum gates using lasers to manipulate the 
electronic state of the ion (41). Trapped ion qubits use atoms that come from nature, rather than 
manufacturing the qubits synthetically (31). 

§ Gate-based superconducting processors: Superconducting quantum computing is an implementation 
of a QC in superconducting electronic circuits. Superconducting qubits are built with superconducting 
electric circuits that operate at cryogenic temperatures (22). 

§ Photonic processors: A quantum photonic processor is a device that manipulates light for computations. 
Photonic QCs use quantum light sources that emit squeezed-light pulses, with qubit equivalents that 
correspond to modes of a continuous operator, such as position or momentum (23). 

§ Neutral atom processors: Neutral atom qubit technology is similar to trapped ion technology. However, 
it uses light instead of electromagnetic forces to trap the qubit and hold it in position. The atoms are not 
charged, and the circuits can operate at room temperatures (42). QuEra has a publicly accessible neutral-
atom computer 5. It is a 256-qubit QC based on programmable arrays of neutral Rubidium atoms, trapped 
in vacuum by tightly focused laser beams. 

§ Rydberg atom processors: A Rydberg atom is an excited atom with one or more electrons that are further 
away from the nucleus, on average. Rydberg atoms have a number of peculiar properties including an 
exaggerated response to electric and magnetic fields, and long life. When used as qubits, they offer strong 
and controllable atomic interactions that you can tune by selecting different states (21). 

§ Quantum annealers: Quantum annealing uses a physical process to place a quantum system’s qubits in 
an absolute energy minimum. From there, the hardware gently alters the system’s configuration so that 
its energy landscape reflects the problem that needs to be solved. The advantage of quantum annealers is 
that the number of qubits can be much larger than those available in a gate-based system. In fact, Quantum 
annealing is implemented in D-Wave’s generally available QCs, such as the Advantage™ 6, enabling the 
creation of Quantum Processing Units (QPUs) with more than 1200 qubits, far beyond the state of the art 
for gate-model quantum computing. However, their use is limited to specific cases only (1). 

 
5 https://www.quera.com 
6 https://www.dwavesys.com 
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2.3. Quantum Data. - Quantum data is any data source that occurs in a natural or artificial quantum system. Quantum 
data exhibits superposition and entanglement, leading to joint probability distributions that could require an exponential 
amount of classical computational resources to represent or store. The quantum supremacy experiment showed it is 
possible to sample from an extremely complex joint probability distribution of 253 Hilbert space. 
 
The qubit serves as the basic unit of quantum information. It represents a two-state system, just like a classical bit, 
except that it can exist in a superposition of its two states. In one sense, a superposition is like a probability distribution 
over the two values. However, a quantum computation can be influenced by both values at once, inexplicable by either 
state individually. In this sense, a superposed qubit stores both values simultaneously. When measuring a qubit, the 
result is a probabilistic output of a classical bit. If a QC manipulates the qubit in a particular way, wave interference 
effects can amplify the desired measurement results. 
 
The quantum data generated by NISQ processors are noisy and typically entangled just before the measurement occurs. 
Heuristic ML techniques can create models that maximize extraction of useful classical information from noisy 
entangled data. 
 
The following are examples of quantum data that can be generated or simulated on a quantum device: 

§ Chemical simulation: Extract information about chemical structures and dynamics with potential 
applications to material science, computational chemistry, computational biology, and drug discovery (10). 

§ Quantum matter simulation: Model and design high temperature superconductivity or other exotic states 
of matter which exhibits many-body quantum effects (25). 

§ Quantum control: Hybrid quantum-classical models can be variationally trained to perform optimal open or 
closed-loop control, calibration, and error mitigation. This includes error detection and correction strategies 
for quantum devices and quantum processors (17). 

§ Quantum communication networks: Use ML to discriminate among non-orthogonal quantum states, with 
application to design and construction of structured quantum repeaters, quantum receivers, and purification 
units (3). 

§ Quantum metrology: Quantum-enhanced high precision measurements such as quantum sensing and 
quantum imaging are inherently done on probes that are small-scale quantum devices and could be designed 
or improved by variational quantum models (24). 

 
2.4. Quantum Gates. - The state of qubits can be manipulated by applying quantum logic gates, analogous to how 
classical bits can be manipulated with classical logic gates. Unlike many classical logic gates, quantum logic gates are 
reversible (6). Quantum logic gates are represented by unitary matrices, a gate which acts on n qubits is represented 
by 2n × 2n unitary matrix. 
 
Quantum states are typically represented by kets, from a notation know as bra-ket, the vector representation of a single 
qubit is shown in equation 1. 

 
Here v0 and v1 are the complex probability amplitudes of the qubit, these values determine the probability of measuring 
a 0 or a 1, when measuring the state of the qubit. The value zero is represented by the ket in equation 2, and the value 
one is represented by the ket in equation 3. 

 

 
The tensor product denoted by the symbol ⊗, is used to combine quantum states. The action of the gate on a specific 
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quantum state is found by multiplying the vector |φ1i which represents the state by the matrix U representing the gate, 
thus the result is a new quantum state |φ2i shown in equation 4. 

 
There exist many numbers of quantum gates, below we review some of the most often used in the literature: 
 

§ NOT Gate: This gate is widely known as X-Pauli gate, as this particular quantum gate transforms the 
existing state of the qubit to be rotated around the X-axis. As the name suggests, the NOT gate would 
convert a qubit from its initial state to its complement state. This quantum gate is represented by the 
matrix in equation 5 and operates as shown in equation 6. 

 

 
 

§ Y-Pauli Gate: The Y-Pauli gates are capable of rotating the input qubit around the Y-axis. This quantum 
gate is represented by the matrix in equation 7 and operates as shown in equation 8. 

 

 
 

§ Z-Pauli Gate: The Z-Pauli or phase flip gate are capable of rotating the input qubit around the Z-axis. 
This quantum gate is represented by the matrix in equation 9. 

 
Pauli Z leaves the biasis state |0i unchanged and maps |1i to −|1i as shown in equation 10. 

 
 

§ Controlled NOT Gate: The Controlled NOT (CNOT) gate acts on 2 (or more) qubits and performs the 
NOT operation on the second (or more) qubit only when the first qubit is |1i, this gate is represented by 
the Hermitian unitary matrix (equation 11), and operates as in equation 12. 
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§ Hadamard gate: The Hadamard gate, acts on a single qubit and creates an equal superposition state 
given a basis state. The Hadamard gate performs a rotation of√ π around the axis (xˆ + zˆ)/ 2 at the 
Bloch Sphere (Figure I). This gate is represented by the Hadamard matrix (equation 13) and operates as 
in equation 14. 

 
 
2.5. Noise. - Noise is present in modern day QCs. Qubits are susceptible to interference from the surrounding 
environment, imperfect fabrication, TLS and sometimes even gamma rays. Until large scale error correction is 
reached, the algorithms of today must be able to remain functional in the presence of noise. This makes testing 
algorithms under noise an important step for validating quantum algorithms and quantum models. 
 

 
Figure I. Bloch sphere to represent a qubit. 

 
2.6. Quantum Error Correction (QEC). - QEC is used in quantum computing to protect quantum information from 
errors due to decoherence and other quantum noise. Traditional error correction employs over repetition. The 
repetition code is the simplest but most inefficient way. The idea is to store the information multiple times and take a 
larger vote in the event that these copies are later found to differ. Copying quantum information is not possible due to 
the no-cloning theorem. This theorem seems to present an obstacle to formulating a theory of QEC, nevertheless, it is 
conceivable to transfer the logical information of a single qubit to a highly entangled state of several physical qubits 
(33). 
 
2.7. Quantum Cybersecurity. – 
 
2.7.1. Quantum Cryptography. - Cryptography has had an important development since 1975 with the establishment 
of the Data Encryption Standard (DES) algorithm for file encryption while computing was emerging. Since then, 
several algorithms have been developed to fulfill this cryptographic function, the best-known being RSA (Rivest-
Shamir-Adleman) and Advanced Encryption Standard (AES). 
 
With the emergence of quantum computing, several researchers comment on the risk that the rise of this paradigm 
may threaten encryption algorithms based on classical computing, which are considered secure due to the amount of 
time it takes to test all combinations, easily 50 years using supercomputers. Quantum computing threatens the security 
of these algorithms by being able to perform calculations much faster. Being able to solve operations that in the 
classical paradigm would take about 50 years using supercomputers in a matter of seconds. 
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The state of the art of quantum computing proposes modifications to algorithms RSA (7) and AES (19): 

§ (19) proposes a modified AES algorithm comparing different methods of random number generation, 
resulting in the use of Quantum Random Walk (QRW) the best encryption performance. It is proposed 
the modifying the Shift row operation introducing random movements using QRW, making it difficult 
to predict the correct order during the decryption process. This adds an additional layer of complexity 
and makes attempts to decrypt encrypted information difficult without proper knowledge of the correct 
sequence. 

§ (7) proposes that the little investigation about RSA algorithm in Quantum computing is due to actual 
limits of Shor’s algorithm. They propose a Quantum ring algorithm: GEECM (Grover plus Elliptic-Curve 
factorization Method using Edwards curves), using pre-quantum algorithm to find small primers and 
accelerate it with quantum techniques (7). 

 
2.7.2. Quantum Key Distribution (QKD). - This topic is closely related to cryptography, since the security of the 
data depends on the transmission of the key previously generated by a cryptographic algorithm. 
 
There are dangers associated with the transmission of the key that were partly solved with the introduction of the 
asymmetric key (whose most famous algorithm is RSA). 
 
Quantum computing proposes new solutions in this aspect by being able to transmit the same key to two recipients 
(Alice and Bob), with a very high certainty of corroborating that there is no third person obtaining this key. This is 
possible due to quantum properties such as entanglement and non-cloning. With entanglement it is possible to know 
the state of both photons (i.e. direction of spin) and non-cloning allows to detect if there is any intruder in the system, 
since it would yield a common key different from Alice and Bob (Figure II). 
 

 
Figure II: Quantum Key Distribution (QKD) 

 
Since Alice and Bob have the same common key, Alice can encrypt her message and send it to Bob, who has the key 
to decrypt and therefore read the message. We assume noise-free channel for this situation. 
 
Quantum computing can also contribute to the ’one-time-pad’ problem of classical computing by providing random 
keys due to the Heisenberg uncertainty principle. Note that in this type of problem security depends to some degree 
on the randomness of the key. 
 
2.8. Quantum Machine Learning (QML). - One of the most successful technologies of this century is ML, a subset 
of Artificial Intelligence (AI) that focuses on developing algorithms and models that enable computers to learn from 
data and make predictions or decisions without being explicitly programmed. 
 
Like other classical theories, ML and learning theory can in fact be embedded into the quantum mechanical formalism. 
Formally speaking, this embedding leads to the field known as QML which aims to understand the ultimate limits of 
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data analysis allowed by the laws of physics. While there are similarities between classical and QML, there are also 
some differences. Because QML employs QCs, noise from these computers can be a major issue. 
 

In ML we have different paradigms that also applies to QML: 

§ Supervised Learning (Task-based) 

§ Unsupervised Learning (Data-based) 

§ Reinforcement Learning (Reward-based) and there is a bunch of 
algorithms of QML being researched: 

§ Quantum Neural Networks (QNNs) 

§ Quantum Kernels (QKs) 

§ Variational Quantum Algorithms (VQAs) 
 
 

2.8.1. Quantum Neural Networks (QNNs). - A QNN is used to describe a parameterized quantum computational 
model that is best executed on a QC. This term is often interchangeable with Parameterized Quantum Circuit (PQC). 
These involve a sequence of unitary gates acting on the quantum data states |ψji, some of which have free parameters 
θ that will be trained to solve the problem. 
 
QNNs are employed in all three QML paradigms mentioned above. For instance, in a supervised classification task, 
the goal of the QNN is to map the states in different classes to distinguishable regions of the Hilbert space, in the 
unsupervised learning scenario of a clustering task is mapped onto a MAXCUT problem (27) and solved by training 
a QNN to maximize distance between classes. Finally, in the reinforced learning task of a QNN can be used as the Q-
function approximator (36), which can be used to determine the best action for a learning agent given its current state. 
As in classical neural networks, there are different types of networks such as convolutional networks, recurrent 
networks, etc. their quantum variants have been researched, such as quantum convolutional neural networks (13) and 
quantum recurrent neural networks (4). 
 
2.8.2. Quantum Kernels (QKs). In ML, a kernel is a function that defines the similarity or distance between pairs of 
data points in a high-dimensional feature space. QK methods consider the computation of kernel functions using QCs. 
There are many possible implementations. For example, consider a reproducing kernel Hilbert space equal to the 
quantum state space, which is finite dimensional. In simpler terms, we can think of the quantum state space as a finite-
dimensional space (34). By using this approach, we can calculate kernel functions within this finite-dimensional space. 
Another approach involves studying a reproducing kernel Hilbert space that is infinite-dimensional. In this case, we 
are transforming classical vectors (which represent data points) using a QC. The QC helps us map these classical 
vectors into infinite-dimensional vectors, an infinite-dimensional space allows for more complex representations and 
calculations. 
 
2.8.3. Variational Quantum Algorithms (VQAs). - VQAs are a hybrid quantum-classical optimization algorithm in 
which an objective function is evaluated by quantum computation, and the parameters of this function are updated 
using classical optimization methods (12). 
 
The variational method in quantum theory is a classical method for finding low energy states of a quantum system. 
The idea of this method is that one defines a wave function (called an ansatz) as a function of some parameters, and 
then one finds the values of these parameters that minimize the expectation value of the energy. 
 
It has been realized that QCs can mimic the classical technique and that a QC does so with certain advantages (29), 
(40), when one applies the classical variational method to a system of n qubits, an exponential number of complex 
numbers is necessary to generically represent the wave function of the system. However, with a QC, one can directly 
produce this state using a PQC with less than exponential parameters. 
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2.8.4. Inductive Bias. - Inductive bias means that any model, can only represent a subset of all possible functions and 
is naturally inclined towards certain types of functions. These functions relate the input features to the output 
predictions. 
 
Inductive bias encompasses the assumptions and restrictions made in the model design and optimization process, 
shaping the search space for potential models. The choice of model parameterization or embedding, as well as 
techniques like regularization and learning rate modulation, contribute to the inductive bias. 
 
To achieve quantum advantage with QML, we aim for QML models that have an inductive bias that is difficult to 
simulate efficiently using classical models. Recent research has shown that it is possible to construct QKs with this 
property, although there are some complexities regarding their trainability. 
 
3. State of the Art. – 
 
3.1. Methodology. - To gather new information on Quantum Cybersecurity it was used the classical search method 
with the following set: 

§ Relevant Topic: Quantum Cybersecurity. Format: Investigation and State of art. Specialized Authors: 
Abd El-Latif, Ahmed. Time Frame: 2021-2023. 

§ Keywords: Quantum, post-quantum, Cybersecurity, encryption, Key-Distribution, Authentication, 
Digital signature, IoT. BDB: Web of Science, Springerlink. 

 
Meanwhile, to gather more information on QML, it was used the Snowball methodology, reading the citations of the 
most recent papers on QML. 
 
3.2. Related works and Research to QML and Cybersecurity. - The related works on cybersecurity reported in the 
literature is summarized below. 
 
In (19), the authors propose a modified AES algorithm and use quantum computing to encrypt/decrypt AES image 
files using IBM Qiskit for performance evaluation. They show that AES algorithm can be implemented using quantum 
gates and suggest that AES be implemented with random number generation. 
 
AES is combined with the use of random number generation in the process. In the traditional implementation of the 
AES algorithm, the Shift Row operation moves the data to align them at certain encryption steps. Since the decryption 
process can reverse the order of these steps, it becomes predictable. To address this vulnerability, the author suggests 
modifying the performance of the Shift Row operation to introduce random movements using Quantum Random Walk 
(QRW), making it difficult to predict the correct order during the decryption process, achieving greater security than 
classical approach. 
 
In (37), the authors focus on analyzing characteristics of the quantum cryptography and exploring of the advantages 
of it in the future internet. They analyze the QKD protocol in the noise-free channel by making measurements of 
different variables. Probability of the eavesdropper being detected v/s number of photons measured in a noise-free 
channel and 30% noise. Also analyzes the probabilities of errors in the receiver v/s probability of eavesdropper to 
eavesdrop on the channel. 
 
In (39), the authors make a contribution in the state of the art of cybersecurity from wide perspectives. They give an 
overview of quantum computing and how it can affect cybersecurity issues. Also demonstrate solutions in quantum 
computing to problems in classical computing paradigm related to cybersecurity and relates how quantum computing 
could be used in the future to make cybersecurity solutions better. 
 
In (7), the authors make a contribution proposing parameters and changes to RSA to make Key-Generation, encrypt 
and decryption, signatures and verification feasible in actual computing and, at the same time, protected against 
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quantum computing attacks. They propose a new quantum algorithm to generate factor numbers, GEECM faster than 
Shor and algorithms of classic paradigm. 
 
In (36), the authors introduce a new training method for PQCs that can be used to solve Reinforcement Learning (RL) 
tasks for discrete and continuous state spaces based on the deep Q-learning algorithm. They adapt the Deep Q-Network 
(DQN) algorithm to use a PQC as its Q-function approximator instead of a Neural Network (NN). For this, they use 
a hardware-efficient ansatz, a target network, an -greedy policy to determine the agent’s next action and experience 
replay to draw samples for training the Q-network PQC. The Q-network then is Uθ(s) parametrized by θ and the target 
network PQC is Uˆθδ(s), where θδ is a snapshot of the parameters θ which is taken after fixed intervals of episodes δ 
and the circuit is otherwise identical to that Uθ(s). 
 
Depending on the state the authors distinguish between two different types of space states: Discrete and Continuous. 
 
The Q-values of the quantum agent are computed as the expectation values of a PQC that is fed a state s according to 
equation 15. 

 
where Oa is an observable and n the number of qubits, and the model outputs a vector including Q-values for each 
possible Oa. 
 
In (11), the authors demonstrate the out-of-distribution generalization for the task of learning in QML, where the 
training and testing data are drawn from a different distribution. The authors consider the QML task of learning an 
unknown n-qubit unitary U ∈ U(C2n). The goal is to use training states to optimize the classical parameters α of V (α), 
an n-qubit unitary QNN, such that for the optimized parameters αopt,V (αopt) well predicts the action of U on previously 
unseen test states. The prediction performance of the trained QNN V (αopt) can be quantified in terms of the average 
distance between the output state predicted by V (αopt) and the true output state determined by U. 
 
They provide numerical evidence to support analytical results showing that out-of-distribution generalization is 
possible for the learning of quantum dynamics. They focused on the task of learning the parameters of an unknown 
target Hamiltonian by studying the evolution of product states under it. The authors work establishes that for learning 
unitaries, QNNs trained on quantum data enjoy out-of-distribution generalization between some physically relevant 
distributions if the training data size is roughly the number of trainable gates. 
 
In (2), the authors propose a new strategy for reducing the number of measurements in variational quantum-classical 
algorithms (VQCAs) needed for convergence. VQCAs efficiently evaluate a cost function on a QC while optimizing 
the cost value using a classical computer. Certain issues arise in VQCAs that are not common in classical algorithms, 
implying that standard off-the-shelf classical optimizers may not be best suited to VQCAs. For example, multiple runs 
of quantum circuits are required to reduce the effects of shot noise on cost evaluation. An additional complication is 
that quantum hardware noise flattens the training landscape. 
 
The authors have recently investigated shot-frugal gradient descent for VQCAs, introduced an optimizer, called 
iCANS (individual Coupled Adaptive Number of Shots), which outperformed offthe-shelf classical optimizers such 
as Adam for variational quantum compiling and Variational Quantum Eigensolver (VQE) tasks. The key feature of 
iCANS is that it maximizes the expected gain per shot by frugally adapting the shot noise for each individual partial 
derivative. In VQE and other VQCAs, it is common to express the cost function C = hHi as the expectation value of 
a Hamiltonian H that is expanded as a weighted sum of directly measurable operators {hi}i according to equation 16. 

 
then C is computed from estimations of each expectation hhii, which is obtained from many shots. The author’s 
proposal is to randomly assign shots to the hi operators according to a weighted probability distribution proportional 
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to |ci|, they prove that this leads to an unbiased estimator of the cost C, even when the number of shots is extremely 
small like a single shot. This allows one to unlock a level of shot-frugality for unbiased estimation that simply cannot 
be accessed without operator sampling. In addition, the randomness associated with operator sampling can provide a 
means to escape from local minima of C. 
 
A combination of the new sampling strategy with iCANS leads to the main result, which is an improved optimizer for 
VQCAs that they call Rosalin (Random Operator Sampling for Adaptive Learning with Individual Number of shots). 
Rosalin retains the crucial feature of maximizing the expected gain per shot. the authors analyze the potential of 
Rosalin by applying it to VQE for three molecules, namely H2, LiH, and BeH2, and compare its performance with that 
of other optimizers. In cases with more than a few terms in the Hamiltonian, Rosalin outperforms all other optimizer 
and sampling strategy combinations considered. 
 
In (20), the authors generalize a quantum natural gradient to consider arbitrary quantum states to significantly 
outperform other VQAs. Quantum Fisher information in the context of general VQCs is a measure that quantifies how 
much and in what way changing parameters in a quantum circuit affects the underlying quantum state. 
 
The aim of the authors is to minimize the expectation value E(θ) = Tr[ρ(θ)H] of a Hermitian observable H over the 
parameters θ using a VQC that depends on these parameters, this circuit produces the quantum states ρ(θ) = Φ(θ)ρ0 

via mapping and might involve non-unitary transformations due to experimental imperfections or indeed intentional 
non-unitary elements, such as measurements. 
 
The authors propose a natural gradient update rule, where the quantum Fisher information matrix Fq corrects the 
gradient vector gk to account for the dependent and non-uniform effect of the parameters on an arbitrary quantum state 
ρ(θ) mixed or pure. their method also applies to infinite-dimensional quantum states as continuous-variable systems. 
 
The natural gradient descent proposed by the authors in principle allows for improvements relative to imaginary time 
evolution and the pure-state variant of natural gradient. First even when the objective function is generated by an 
observable as E(θ) = Tr[ρ(θ)H], their approach allows for general non-unitary elements as Completely Positive Trace-
Preserving (CPTP) maps which in principle enable the manipulation of exponentially more degrees of freedom. 
Second the expected value E(θ) := Tr[ρ(θ)H] is a mapping that is linear in quantum state, their results shown that are 
well-defined for more general objective functions and its convergence is guaranteed even in the presence of shot noise. 
When compared to previous studies, the new approach has the advantage that it explicitly takes into account 
imperfections of the VQC. 
 
In (16), the authors provide an accessible introduction to Quantum Embedding Kernels (QEKs) and then analyze the 
practical issues arising when realizing them on a noisy near-term QC. QEKs are a subclass of quantum kernel methods 
where a PQC is used to embed datapoints into the Hilbert space of quantum states. QEKs have certain appealing 
properties that make them attractive for use, like they limited depth does not require long coherence times, another 
strong point is that noisy PQCs still lead to well-defined QEKs. The authors propose a series of improvements. First, 
to use the kernel-target alignment as a cost function to train parameters of the QEK to increase its performance on 
particular datasets. Second, they propose a mitigation strategy tailored for the QEKs that exploits the kernel’s 
definition to infer the underlying noise levels. Lastly, they propose a strategy for alleviate the influence of noise on 
the kernel matrix based on a semi-definite program. 
 
The QEK is defined as the inner product between quantum states, which is given by the overlap shown in equation 
17. 

 
Associated to the quantum feature map |φ(x)i, but we are not able to avoid noise, which means that we cannot assume 
that the embedded quantum state is pure, then the quantum embedding is realized by a data-dependent density matrix 
ρ(x) which for pure states reduces to ρ(x) = |φ(x)ihφ(x)|, with this modification the inner product is given by equation 
18. 
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This inner product is also known as the Hilbert-Schmidt inner product for matrices. In summary, any quantum feature 
map induces a QEK. We can use this kernel as a subroutine in a classical kernel method, for example the Support 
Vector Machine (SVM), which yields a hybrid quantum-classical approach. 
 
To be able to use QEKs in this way, is needed to evaluate the overlap of two quantum states on near-term hardware. 
There are a number of advanced algorithms to estimate the overlap of two quantum states. All these algorithms work 
for arbitrary states, and so they are agnostic to how the states were obtained by necessity. By exploiting the structure 
and specifics of QEKs, though. The authors propose a better way to do this overlap, for unitary quantum embeddings 
they construct the adjoint of the data-encoding circuit U†(x). Another approach proposed is the SWAP test, based on 
the SWAP trick, a mathematical gimmick that allow to transform the product of the density matrices into a tensor 
product (9). 
 
Finally, the authors have performed various numerical experiments that showed improvement in classification 
accuracy after training. They have also investigated noise mitigation techniques and proposed device noise mitigation 
techniques specific for kernel matrices and combined them with regularization methods. Lastly, they tested a large set 
of combinations, both on simulated depolarizing noise as well as on data from a real quantum processing unit. 
 
3.3. Comparative analysis of the latest advances. - Table I shows the advantage (column “Comparative advantage”) 
of the contribution made (2nd column) by the reference in column “Ref”. 
 
3.4. Bibliographic Discussion. - From the literature about the problems and the context of development of the search, 
it has been possible to delve into the new contributions and their functionalities. 
 
We have noticed that in the QML field, researchers opted for different algorithms competing against each other to see 
which one gives the best results, QNNs vs. QVAs vs. QKs, each one with its own pros and cons. It will be necessary 
to observe how these algorithms evolve with the passage of time and the advancement of technology. 
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Ref Contribution made Comparative advantage 

(36) New training method for PQCs that can be used to solve 
Reinforcement learning tasks for discrete and continuous 
states spaces based on the deep Q-learning algorithm 

Training method for discrete and continuous 
state spaces for quantum circuits 

(11) Demonstration the Out-of-Distribution generalization for 
the task of learning in QML where the training and testing 
data are drawn from different distributions 

Ability to extrapolate from training data to 
unseen data with the potential of QML 
methods to outperform classical ML 

(2) New strategy for reducing the number of measurements with 
an adaptive optimizer to construct an improved optimizer 
called Rosalin that implements stochastic gradient descent 
while adapting the shot noise for each partial derivative and 
randomly assigning the shots according to a weighted 
distribution 

Rosalin outperforms other optimizers in the 
task to find the ground states of molecules 
H2, LiH, and BeH2 without and with 
quantum hardware noise 

(20) Generalization of quantum natural gradient to consider 
arbitrary quantum states via completely positive maps, thus 
the circuits can incorporate both imperfect unitary gates and 
fundamentally non-unitary operations such as measurements 

Demonstration in numerical simulations of 
noisy quantum circuits the practicality of the 
new approach and confirm it can 
significantly outperform other variational 
techniques 

(16) An accessible introduction to quantum embedding kernels, 
a analysis of the practical issues arising when realizing them 
on a noisy near-term QC, and a strategy to mitigate these 
detrimental effects which is tailored to quantum embedding 
kernels 

Improvement in classification accuracy after 
training, noise mitigation techniques and 
regularization methods for specific kernel 
matrices 

(19) Propose of AES algorithm for Quantum Computing with 
improved Security using QRW 

Propose of Quantum version of AES 
algorithm with improvement against 
Quantum attacks 

(37) Explication of QKD and experiments with Quantum Noise State of art about QKD and experiments with 
eavesdropper 

(7) Propose parameters and changes to RSA,on QC, to make 
feasible in actual 

Proposes a GEECM, faster algorithm than 
Shor and experiments with eavesdropper 

(39) Give an overview of QC related to Cybersecurity presenting 
several Quantum solutions and show how can be used in 
future to make the area better than now 

Proposes a state of art of Quantum attacks, 
and existing Quantumbased approaches for 
Cybersecurity 

Table I. Comparative Table 
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3.5. State of the Art Timeline. - Table II shows a timeline of quantum computing major advances. 
 

Date Quantum Computing Major Advances 
1970 James Park articulates the no-cloning theorem (28) 
1973 Alexander Holevo articulates the Holevo’s Theorem and Charles H. Bennet shows that computation 

can be done reversibly (6) 
1980 Paul Beinoff describes the 1st quantum mechanical computer model (5), Tomasso Toffoli introduces 

the Toffoli Gate (38) 
1985 David Deutsch describes the 1st universal QC 
1992 David Deutsch and Richard Jozsa propose a computational problem that can be solved efficiently with 

the Deutsch–Jozsa algorithm on a QC 
1993 Dan Simon invents an oracle problem, for which a QC would be exponentially faster than a 

conventional computer 
1994 Peter Shor publishes the Shor’s Algorithm 
1995 Peter Shor proposes the 1st schemes for quantum error correction (35) 
1996 Lov Grover invents the quantum DB search algorithm 
2000 Arun K. Pati and Samuel L. Braunstein proved the quantum no-deleting theorem 

2001 First execution of Shor’s algorithm 
2003 Implementation of the Deutsch–Jozsa algorithm on a QC 
2006 First 12 qubit QC benchmarked 
2007 D-Wave Systems demonstrates use of a 28-qubit annealing QC 
2009 First electronic quantum processor created 
2010 Single-electron qubit developed 
2014 Scientists transfer data by quantum teleportation over a distance of 3 m with 0% error rate (30) 

2017 IBM unveils 17-qubit QC 
2018 Google announces the creation of a 72-qubit quantum chip 
2019 IBM reveals its biggest QC yet, consisting of 53 qubits 
2020 Google engineers report the largest chemical simulation on a QC 
2021 IBM claims that it has created a new 127 quantum bit processor 
2022 Researchers at Google Quantum AI Team Make Traversable Wormhole with a QC 

2023 Researchers of Innsbruck have entangled two ions over a distance of 230 m 

Table II. Timeline of Quantum Computing Major Advances 
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3.6. Expected or surprising results. - While we look for information for this survey, we read a diversity of articles, 
where some of them appears to be science fiction or coming out from a movie, but they are real scientific investigations 
like (18) in Nature. This article caused some controversy and what we least want is to get into controversy, but we 
must not forget that it is an amazing experiment and discovery. 
 
Another point that caught the attention is the rapid advance of quantum computing. It is a subject that is not heard as 
much as AI or neural networks, but it is a field that is advancing by leaps and bounds. So we are happy to contribute 
with this survey. 
 
4. Conclusions. - Quantum Computing is still in its early stages, and building a functional and efficient QC with 
enough qubits will take years. 
 
QCs have the ability to simulate molecular behavior at a fundamental level, making them valuable for various 
industries. Automakers like Volkswagen and Daimler use QCs to analyze and improve the composition of electric 
vehicle batteries. Pharmaceutical companies also utilize QCs to study chemicals and explore new possibilities for 
medicine development. Quantum computing has the potential to revolutionize society, with its ability to solve 
optimization problems quickly by evaluating numerous solutions. Airbus employs QCs to determine fuel-efficient 
flight paths, while Volkswagen has developed a tool for optimizing bus and taxi routes to reduce traffic congestion. 
Some scientists believe that QCs could accelerate advancements in AI. However, the full extent of quantum 
computing’s potential may take many years to realize. 
 
The QML domain should also target designing new quantum learning models that will observe patterns under quantum 
mechanics schemes, not classical statistical theory. This will provide an opportunity to explore new model 
architectures that might overcome classical machine learning limitations. 
 
The development of post-quantum cryptography is crucial to mitigate the cybersecurity risks posed by quantum 
computing. Post-quantum cryptography refers to algorithms that are resistant to attacks from QCs. It not only improves 
database search capabilities but also addresses optimization problems in various business domains such as data 
analytics, logistics, and medical research. 
 
Discovering better algorithms to work with quantum computing is still an open area of research. Finally, this study 
gives an overview of QML, quantum cybersecurity and recent studies in quantum computations with its possible 
applications. 
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