Memoria Investigaciones en Ingeniería, núm. 28 (2025). pp. 71-84
https://doi.org/10.36561/ING.28.7
ISSN 2301-1092 ISSN (en línea) 2301-1106 Universidad de Montevideo, Uruguay
Este es un artículo de acceso abierto distribuido bajo los términos de una licencia de uso y distribución CC BY-NC 4.0. Para ver
una copia de esta licencia visite http://creativecommons.org/licenses/by-nc/4.0/
71
Interacción Suelo-Estructura de una edificación con losa de cimentación con
los modelos estáticos de Winkler y Pasternak
Soil-Structure interaction of a building with a foundation slab with the static
models of Winkler and Pasternak
Interação solo-estrutura de uma edificação com laje de fundação com os modelos
estáticos de Winkler e Pasternak
Juan Contreras
1
, Genner Villarreal Castro
2
,(*)
Recibido: 30/09/2024 Aceptado: 26/01/2025
Resumen. - Winkler y Pasternak establecieron que la interacción suelo estructura entre la base de una estructura y el
suelo de cimentación, se puede idealizar como un conjunto de resortes de rigidez que se desplazan como resultado de
la carga aplicada sobre su superficie (Ubani, 2022). El aporte de los modelos estáticos es la incorporación de las
propiedades dinámicas del suelo mediante modelos de comportamiento elástico lineal del suelo, facilitando los
procedimientos de cálculo en función a las propiedades mecánicas obtenidas del estrato del suelo de fundación.
Mediante la incorporación de los coeficientes estáticos obtenidos con las propiedades elásticas del suelo, en un modelo
estructural es posible verificar si puede existir alguna variación en el comportamiento estructural del modelo (Villarreal,
2017). En este aspecto la investigación surgió con el objetivo de determinar si esas variaciones pueden ser significativas
afectando el comportamiento estructural de la edificación que tiene como fundación una losa de cimentación. Se
consideró para ello las propiedades del suelo obtenidas de un estudio de mecánica de suelos (EMS), mediante el cual
se determinó que el suelo se categoriza como S3, con un módulo de elasticidad E_s=1150 tonf/m2, coeficiente Poisson
υ=0.30 y altura del estrato en la zona de estudio. La zona sísmica se determinó como una zona de aceleración con 0.25g.
Los resultados se obtuvieron de la comparación del modelo con diseño sismorresistente que considera como parte de
sus parámetros que el suelo de la cimentación es indeformable, y los modelos con los coeficientes de ISE de Winkler
y Pasternak. Mediante los resultados se llegó a concluir que existe un incremento significativo en los esfuerzos cortantes
en el nivel que se encuentra en contacto directo con la losa de cimentación, mientras que la variación en el periodo
fundamental y la deformación lateral de la edificación no fue significativa, considerando en parte que la estructura es
altamente rígida por su sistema estructural de muros a corte.
Palabras clave: Interacción suelo estructura, modelos estáticos de Winkler y Pasternak, coeficientes de rigidez del
suelo.
(*) Autor de correspondencia
1
Doctor en Ingeniería, Universidad Nacional del Santa (Perú), juanalbertocontrerasmoreto1207@gmail.com,
ORCID iD: https://orcid.org/0000-0003-2048-130X
2
Doctor en Ingeniería, Universidad de San Martín de Porres (Perú), gvillarrealc@usmp.pe, ORCID iD: https://orcid.org/0000-0003-1768-646X
J. Contreras, G. Villarreal Castro
Memoria Investigaciones en Ingeniería, núm. 28 (2025). pp. 71-84
https://doi.org/10.36561/ING.28.7
ISSN 2301-1092 ISSN (en línea) 2301-1106 Universidad de Montevideo, Uruguay
72
Summary. - Winkler and Pasternak established that the soil-structure interaction between the base of a structure and
the foundation soil can be idealized as a set of stiffness springs that move as a result of the load applied to its surface
(Ubani, 2022). The contribution of static models is the incorporation of the dynamic properties of the soil through
linear elastic soil behavior models, facilitating the calculation procedures based on the mechanical properties obtained
from the foundation soil stratum. By incorporating the static coefficients obtained with the elastic properties of the soil,
in a structural model it is possible to verify if there may be any variation in the structural behavior of the model
(Villarreal, 2017). In this aspect, the research arose with the objective of determining if these variations can be
significant in affecting the structural behavior of the building that has a foundation slab as a foundation. For this
purpose, the soil properties obtained from a soil mechanics study (SMS) were considered, through which it was
determined that the soil is categorized as S3, with an elasticity modulus E_s=1150 ton/m2, Poisson coefficient υ=0.30
and height of the stratum in the study area. The seismic zone was determined as an acceleration zone with 0.25g. The
results were obtained from the comparison of the model with earthquake-resistant design that considers as part of its
parameters that the foundation soil is non-deformable, and the models with the SSI coefficients of Winkler and
Pasternak. Through the results, it was concluded that there is a significant increase in the shear stresses at the level
that is in direct contact with the foundation slab, while the variation in the fundamental period and the lateral
deformation of the building was not significant, considering in part that the structure is highly rigid due to its structural
system of shear walls.
Keywords: Soil-structure interaction, static Winkler and Pasternak soil models, soil stiffness coefficients
Resumo. - Winkler e Pasternak estabeleceram que a interação solo-estrutura entre a base de uma estrutura e o solo
de fundação pode ser idealizada como um conjunto de molas de rigidez que se movem em decorrência da carga
aplicada em sua superfície (Ubani, 2022). A contribuição dos modelos estáticos é a incorporação das propriedades
dinâmicas do solo por meio de modelos de comportamento elástico linear do solo, facilitando os procedimentos de
cálculo com base nas propriedades mecânicas obtidas do estrato do solo de fundação. Ao incorporar os coeficientes
estáticos obtidos com as propriedades esticas do solo, em um modelo estrutural é possível verificar se pode haver
alguma variação no comportamento estrutural do modelo (Villarreal, 2017). Nesse aspecto, a pesquisa surgiu com o
objetivo de determinar se essas variações podem ser significativas em afetar o comportamento estrutural da edificação
que possui uma laje de fundação como fundação. Para tanto, foram consideradas as propriedades do solo obtidas a
partir de um estudo de mecânica dos solos (MSS), por meio do qual foi determinado que o solo é categorizado como
S3, com módulo de elasticidade E_s=1150 ton/m2, coeficiente de Poisson υ=0,30 e altura do estrato na área de estudo.
A zona sísmica foi determinada como uma zona de aceleração com 0,25g. Os resultados foram obtidos a partir da
comparação do modelo com projeto resistente a terremotos que considera como parte de seus parâmetros que o solo
de fundação é não deformável, e os modelos com os coeficientes SSI de Winkler e Pasternak. Por meio dos resultados,
concluiu-se que um aumento significativo nas tensões de cisalhamento no nível que está em contato direto com a
laje de fundação, enquanto a variação no período fundamental e na deformação lateral da edificação não foi
significativa, considerando em parte que a estrutura é altamente rígida devido ao seu sistema estrutural de paredes de
cisalhamento.
Palavras-chave: Interação solo-estrutura, modelos estáticos de solo de Winkler e Pasternak, coeficientes de rigidez
do solo.
J. Contreras, G. Villarreal Castro
Memoria Investigaciones en Ingeniería, núm. 28 (2025). pp. 71-84
https://doi.org/10.36561/ING.28.7
ISSN 2301-1092 ISSN (en línea) 2301-1106 Universidad de Montevideo, Uruguay
73
1. Introducción. - Los modelos estáticos de interacción suelo estructura de Winkler (1867) y Pasternak (1954) integran
la rigidez del suelo en el análisis dinámico de las estructuras, mediante coeficientes estáticos, calculados con parámetros
geotécnicos obtenidos para los estratos del suelo que soportarán las cargas propias de la cimentación y de las cargas
que se transmiten de la superestructura. En la actualidad, la utilización de coeficientes de tipo estáticos para el análisis
estructural se realiza mediante el módulo de balasto, no siendo obligatorio su uso según la normativa vigente y
quedando a criterio del ingeniero estructural. Bajo estas condiciones los estudios para determinar la influencia de los
modelos de interacción suelo-estructura en las edificaciones son escazas y limitadas, aun mas considerando las diversas
condiciones sísmicas de un país con alta sismicidad como Perú. En este aspecto, el estudio se realizó en la región de
Cajamarca, al norte del Perú, en la provincia de Jaén, utilizando una edificación en muros estructurales y losa de
cimentación. La costa peruana y las regiones adyacentes han experimentado sismos significativos, como el ocurrido el
31 de mayo de 1970 en Chimbote, que fue afectada por un sismo de magnitud 7.8 en la escala de Richter, lo que
demuestra la importancia y la necesidad de considerar todos los parámetros posibles en el análisis sísmico y el diseño
de las estructuras, siendo por ello los modelos de interacción suelo-estructura estáticos, modelos ideales que incorporan
la rigidez del suelo en el análisis estructural.
La zona considerada en la investigación presenta una geología que se puede considerar única, debido a que la región
se encuentra en una zona de transición entre la Cordillera de los Andes y la llanura amazónica, lo que resulta en zonas
con la presencia de fallas geológicas y depósitos sedimentarios. Estas condiciones contribuyen a la complejidad del
comportamiento sísmico de las estructuras en este tipo de suelo, suelos blandos, con depósitos fluvioaluviales
compactados de baja rigidez.
1.1. Objetivos de la investigación. - Los modelos estáticos de interacción suelo estructura de Winkler y Pasternak de
acuerdo a los estudios teóricos de diversos autores, sugieren que la utilización de estos coeficientes estáticos como una
representación de las propiedades del suelo pueden afectar al comportamiento estructural de la edificación [1]. En ese
aspecto la investigación surge con el objetivo principal de determinar si la influencia de los modelos estáticos de
Winkler y Pasternak en el comportamiento estructural de una edificación con muros estructurales y una losa de
cimentación es significativa.
Como objetivos secundarios se propuso determinar si la ISE estática en los modelos de Winkler y Pasternak, pueden
afectar al periodo fundamental de vibración de la estructura, a las derivas y los esfuerzos cortantes, aspectos
fundamentales del comportamiento estructural de una edificación.
1.2 Implicaciones y limitaciones de la investigación. - Villareal, Cerna, & Espinoza (2021) [2] en un estudio realizado
en una estructura con plateas de cimentación señalan que los modelos de ISE pueden modificar el comportamiento
estructural de las edificaciones, aseverando que se puede realizar un análisis y un diseño de mayor precisión. Asimismo,
Bao & Liu (2019) [3] confirman que los modelos ISE afectan a las propiedades inherentes de una estructura como la
frecuencia de vibración de la estructura, es decir el periodo puede variar como consecuencia del amortiguamiento y
rigidez proporcionados por las cimentaciones al interactuar con el suelo.
En este aspecto, el estudio implica determinar si esa influencia de los modelos estáticos de ISE, pueden modificar el
periodo de la estructura, las derivas (deformaciones laterales) y los esfuerzos internos, principalmente en el nivel
adyacente que, según el estudio realizado por Fernández, Fernández & Cobelo (2022) [4] provoca que las fuerzas
interiores se redistribuyan en los elementos estructurales y la cimentación.
Respecto a las limitaciones de la investigación, el estudio se enmarcó dentro de un análisis convencional por espectros,
un análisis modal espectral que tiene como función principal determinar los periodos por modos de vibración, las
fuerzas cortantes máximas probables y deformación lateral de entrepiso, otorgando la respuesta total por combinación
cuadrática completa (CQC) que están basados en análisis estadísticos que determinan un valor máximo factible. En lo
concerniente al suelo, el estudio de suelo determinó que la cimentación descansa en un solo estrato, debido a que la
losa de cimentación se define como una cimentación superficial.
J. Contreras, G. Villarreal Castro
Memoria Investigaciones en Ingeniería, núm. 28 (2025). pp. 71-84
https://doi.org/10.36561/ING.28.7
ISSN 2301-1092 ISSN (en línea) 2301-1106 Universidad de Montevideo, Uruguay
74
1.3 Fuerzas smicas para el análisis modal. - El análisis sísmico de la estructura se realizó con fuerzas sísmicas de
pseudoaceleración, mediante el procedimiento de análisis modal espectral. La zona de peligro sísmico esta
categorizada como Z2 con un coeficiente de 0.25g. De acuerdo el estudio de Mecánica de suelos (EMS) el suelo de
acuerdo a la velocidad promedio de las ondas de corte (
) y el promedio ponderado del ensayo estándar de
penetración 󰇛
󰇜 se clasifica como un suelo tipo S3. Por tanto, los parámetros establecidos para el sitio (S,TP,TL)
considerados para una zona de riesgo sísmico Z2 son: Factor de suelo , periodo corto del estrato 󰇛󰇜
, periodo largo del estrato 󰇛󰇜 
El factor de uso de la estructura es  (E030, 2018), en lo correspondiente a la configuración estructural de la
edificación, se determinó previamente en un análisis de absorción de cortantes por elementos estructurales, que los
muros estructurales absorben las fuerzas sísmicas por encima del 70%, por tanto, se categoriza como una edificación
con un sistema estructural por muros estructurales, con un factor de reducción de  (E030, 2018).
El cálculo del coeficiente símico  se determinó mediante la norma (E030, 2018), que señala que para todos
los casos donde el periodo de la estructura tiene un periodo fundamental menor al periodo corto del estrato del
suelo   
En la Tabla I se aprecia la altura de la edificacn y los coeficientes usados para el espectro:
Parámetros
Factor
Altura de edificación hn
18.60 m
Coeficiente Ct (sistema muros)
60.00
Periodo estático de la edificación T
0.31
TP (S)
1.00
TL (S)
1.60
T < TP
Cumple condición
C
2.50
Tabla I.- Parámetros normativos
Con esos datos se procedió a calcular la seudoaceleración elástica y no elástica, así como el espectro reducido por
R, con la ecuacn de pseudoaceleración de la norma (E030, 2018). Al reemplazar los parámetros de la tabla en la
ecuación de pseudoaceleración para el espectro elástico se obtuvo:

   

Para realizar el análisis modal espectral de la estructura, se procedió a cargar el espectro elástico .
Este espectro genera las derivas elásticas, por lo cual se proceda realizar una combinación de cargas utilizando el
factor  󰇛󰇜  para obtener los resultados con el espectro de pseudoaceleración 
  󰇛󰇜 
2. Estado del Arte. - Los modelos estáticos de ISE de Winkler (1867) y Pasternak (1954) permiten obtener
coeficientes que representan la rigidez variable de los suelos elásticos, que pueden reemplazar la idealización de las
estructuras como modelos empotrados. Mediante estos modelos ISE, el análisis puede presentar mayor precisión en
la respuesta estructural, por lo cual su importancia radica fundamentalmente en mostrar resultados más reales. El
principio básico de los modelos estáticos en la determinación del modelo ISE es la discretización de la rigidez del
suelo mediante resortes de rigidez que se van a definir como el coeficiente de Balasto, el modelo propuesto por
Winkler (1867) y Pasternak (1954) proponen la utilización de resortes equivalentes colocados en la base de la
cimentación en una simulación bidimensional, que a continuación se detallan.
2.1 Modelo de Winkler (1867). - El modelo de Winkler propone la representación bidimensional del suelo mediante
resortes de rigidez, que se definen o conocen como el módulo de subrasante 󰇛󰇜 que se pueden determinar de forma
experimental o analítica [5]. El módulo de subrasante 󰇛󰇜 considera básicamente la incorporación del coeficiente
en la dirección de reacción del suelo a la cimentación, es decir en forma vertical.
J. Contreras, G. Villarreal Castro
Memoria Investigaciones en Ingeniería, núm. 28 (2025). pp. 71-84
https://doi.org/10.36561/ING.28.7
ISSN 2301-1092 ISSN (en línea) 2301-1106 Universidad de Montevideo, Uruguay
75
Figura I.- Modelo de Winkler (Aristizabal, 1987)
La teoría de Winkler propuso que existe una relación directamente proporcional entre cualquier punto de apoyo del
suelo y la presión resultante de las cargas y el desplazamiento generado (asentamiento del suelo bajo las cargas),
lo cual da lugar a una relación de tipo matemática que se aprecia a continuación:
󰇛󰇜 󰇛󰇜
Donde, los resortes tienen una rigidez y se consideran como el módulo de balasto único que representa al terreno
y que también se puede considerar como constante. Según el modelo propuesto en la Figura I, el coeficiente de balasto
es constante en cada punto y actúa de forma independiente en cada punto, así se considere una losa flexible (Figura
Ia) o una losa con rigidez infinita (Figura Ib). Esta condición en el modelo de Winkler genera una deficiencia en la
condición real del suelo, puesto que considera que los suelos adyacentes a la cimentación no sufren ningún grado de
deformación (Santana, 2020) [6], al considerar hipotéticamente que cuentan con rigideces independientes.
El cálculo del módulo de balasto puede definirse en función al número de estratos para uno y dos estratos, cuyas
ecuaciones de Winkler se describen a continuación.
Para un estrato

 (1)
Para dos estratos



(2)
Donde:
Módulos de elasticidad del suelo de los estratos 1 y 2
Módulos de la relación de Poisson del suelo de los estratos 1 y 2
Espesor de los estratos 1 y 2
2.2 Modelo de Pasternak (1954). - El modelo de Pasternak propone la representación bidimensional del suelo
mediante dos coeficientes de rigidez, el primero el módulo de subrasante propuesto por Winkler en la dirección
vertical o a compresión, y el segundo que describe la rigidez de los empujes laterales del suelo en la cimentación
(Villarreal et al, 2021) [7].
En el modelo de Pasternak se trata de superar la condición de discontinuidad del modelo de Winkler, proponiendo
para ello una capa de corte como se aprecia en la Figura II [8] que permitiría de acuerdo al autor considerar la
interacción entre los resortes adyacentes, mediante dos constantes elásticas independientes.
Figura II.- Modelo de Pasternak [8]
J. Contreras, G. Villarreal Castro
Memoria Investigaciones en Ingeniería, núm. 28 (2025). pp. 71-84
https://doi.org/10.36561/ING.28.7
ISSN 2301-1092 ISSN (en línea) 2301-1106 Universidad de Montevideo, Uruguay
76
El cálculo del módulo de balasto puede definirse en función al número de estratos para uno y dos estratos, tal como
se indica a continuación.
Para un estrato

 (3)

󰇛󰇜 (4)
Para dos estratos



(5)
󰇛󰇜󰇣
󰇛󰇜󰇛  󰇜
󰇛󰇜󰇤 (6)
Donde:
Módulos de elasticidad del suelo de los estratos 1 y 2
Módulos de la relación de Poisson del suelo de los estratos 1 y 2
Espesor de los estratos 1 y 2
3. Modelado de la estructura. - La estructura inicialmente se procedió a modelar con el empotramiento en la base,
considerando para ello las propiedades del concreto, metrados de cargas, sistema estructural, entre otras condiciones.
3.1. Propiedades de la estructura para el modelamiento. - El modelo estructural con las propiedades de los materiales
utilizados para el concreto y acero de la estructura se muestran en la Tabla II:
Elementos
Propiedades
Concreto en vigas, columnas, losas
f’c=210 kgf/cm2
Losa de cimentación e=0.40
f’c=210 kgf/cm2
Acero (resistencia)
f’y=4200 kgf/cm2
Módulo de elasticidad Ec
Ec= 2188.20 kgf/mm2
Coeficiente de Poisson del concreto
ʋ= 0.20
Metro cúbico de concreto (Peso)
=2.4 tonf/m3
Tabla I I.- Propiedades de Resistencia del concreto
El módulo de elasticidad se determinó con la siguiente ecuación de la norma ACI 318:

Al ingresar la resistencia del concreto usado en todos los elementos estructurales, se obtuvo el módulo de elasticidad
del concreto ingresado al software:
 
 
El modelo estructural es una estructura con pórticos y muros estructurales, losas aligeradas en los niveles superiores
y una losa de cimentación de e=0.40 m. Para determinar las derivas de entrepiso en el centro de masa se utilizaron
diafragmas rígidos para los elementos horizontales.
3.2. Cargas propias e impuestas en la estructura. - En lo concerniente a las cargas se utilizaron las cargas promedio
de la norma E.020.
J. Contreras, G. Villarreal Castro
Memoria Investigaciones en Ingeniería, núm. 28 (2025). pp. 71-84
https://doi.org/10.36561/ING.28.7
ISSN 2301-1092 ISSN (en línea) 2301-1106 Universidad de Montevideo, Uruguay
77
Nivel
Concepto
Semisótano al 5to piso
Tabique
Acabado
Ladrillo techo
Cielo raso
Total
Azotea
Ladrillo techo
Cielo raso
Total
Tabla III.- Cargas permanentes de la edificación
En la Tabla III se muestran las cargas gravitacionales impuestas (sin función estructural) en el modelo estructural.
En la Tabla IV se muestran las cargas gravitacionales vivas (por uso de la edificación) en el modelo estructural.
Nivel
Uso (Servicio)
Carga (tonf/m2)
Semisótano
Estacionamiento
0.25
Nivel 1
Vivienda
0.200
Nivel 2
Vivienda
0.200
Nivel 3
Vivienda
0.200
Nivel 4
Vivienda
0.200
Nivel 5
Vivienda
0.200
Azotea
Azotea
0.100
Tabla IV.- Cargas vivas de la edificación
De las tablas elaborados, se procedió a ingresar al modelo en el software ETABS las cargas permanentes (CM) y las
cargas vivas (CV) como se muestra el resumen en la Tabla V.
Cargas a asignar el ETABS
Tipo
Niveles
Total (Tonf/m2)
Carga
Permanente
Semisótano
0.380
1° - 5°
0.380
Azotea
0.140
Carga Viva
Semisótano
0.250
1° - 5°
0.200
Azotea
0.100
Tabla V .- Metrados de cargas en el modelo
El peso sísmico de la edificación se determinó mediante la combinación de cargas definidas en la norma E.030:
 
El modelo estructural se puede apreciar en la Figura III. La estructura tiene una planta típica en todos sus niveles.
Figura III.- Modelo estructural en planta (a) y vista 3D (b)
J. Contreras, G. Villarreal Castro
Memoria Investigaciones en Ingeniería, núm. 28 (2025). pp. 71-84
https://doi.org/10.36561/ING.28.7
ISSN 2301-1092 ISSN (en línea) 2301-1106 Universidad de Montevideo, Uruguay
78
En las Figura IV en a), b) y c) se aprecian los modos de vibración de la estructura. El primer modo de vibración (a)
es en la dirección XX del modelo, el segundo modo de vibración (b) es en la dirección YY del modelo y el tercer
modo de vibración de la estructura es torsional como se puede observar en (c).
Figura IV.- Modos de vibración de la estructura
La estructura con el análisis convencional cuenta con empotramiento en la cimentación (restricción en los 6 grados
de libertad).
4. Modelos estáticos con los coeficientes estáticos. - Para el análisis de la estructura considerando los modelos estáticos
de Interacción Suelo Estructura de Winkler y Pasternak, se procedió a modelar la estructura considerando las
propiedades de los materiales como la resistencia del concreto a compresión y la fluencia del acero. Se consideró las
propiedades del suelo obtenidas del estudio de Mecánica de Suelos, que clasifica el suelo de cimentación como un
suelo flexible S3 con un sólo estrato, con un material blando y una granulometría conformada por arena media a fina.
4.1. Propiedades del modelo estático de Winkler. - Se procedió a calcular el coeficiente estático de Winkler
(coeficiente de rigidez), que se denomina como coeficiente vertical de balasto usado a compresión. Para ello se
utilizó los parámetros obtenidos en el estudio de Mecánica de Suelos (EMS), considerando además que el suelo se
encuentra dentro de los suelos clasificado en la norma (E030, 2018) como blando y que se aprecian a continuación:
Clasificación del suelo : S3 Suelo blando (EMS)
Velocidad de onda :  = 165 m/s (Norma E.030)
Módulo de elasticidad del suelo : = 1150 ton/m2
Coeficiente de Poisson del suelo : = 0.30
Altura de estrato : = 1.00 m
En la ecuación de Winkler (Eq.1), se procedió a determinar el módulo de balasto ingresando el módulo de elasticidad
del suelo (= 1150 ton/m2), el coeficiente de Poisson del suelo (= 0.30) y la altura del estrato (= 1.00 m),
obteniendo el módulo de balasto como se aprecia a continuación:

 󰇛 󰇛󰇜󰇜
J. Contreras, G. Villarreal Castro
Memoria Investigaciones en Ingeniería, núm. 28 (2025). pp. 71-84
https://doi.org/10.36561/ING.28.7
ISSN 2301-1092 ISSN (en línea) 2301-1106 Universidad de Montevideo, Uruguay
79
El coeficiente estático de Winkler fue incorporado en el modelo mediante el comando Area spring, para ello se
procedió a discretizar la losa de cimentación. Después de generar el coeficiente C1, se seleccionó áreas discretizadas,
y se procedió a asignar el coeficiente estático a la losa de cimentación del como se aprecia en la Figura V:
Figura V.- Modelo con los coeficientes estáticos de Winkler
4.2. Coeficientes de interacción suelo estructura estática de Pasternak. - Los coeficientes de rigidez vertical de
Winkler y Pasternak, se determinan mediante la misma ecuación para calcular el coeficiente vertical de balasto
para suelos que tienen un solo estrato. Sin embargo, el modelo de Pasternak considera un coeficiente lateral (Eq.4).
Al reemplazar los valores del suelo obtenidas mediante el EMS, como el módulo de elasticidad, el coeficiente de
Poisson y la altura del estrato se obtuvo el coeficiente de balasto como se aprecia a continuación:


󰇛 󰇜
El coeficiente vertical fue el utilizado para Winkler:

Para incorporar los coeficientes estáticos calculados mediante las ecuaciones de Pasternak, se procedió a discretizar
la losa de cimentación. Luego mediante el comando Area springs se incorporó los coeficientes de balasto en la
dirección vertical tal como se hizo con Winkler. Mientras que el coeficente lateral de Pasternak se ingresó
mediante el comando Spring Properties/Point Springs/ incorporando las propiedades en las direcciones horizontales
de la losa de cimentación (traslacional en X e Y). El modelo con la incorporación de los coeficientes estáticos de
Pasternak se puede apreciar en la Figura VI.
Figura VI.- Modelo con los coeficientes estáticos de Pasternak
J. Contreras, G. Villarreal Castro
Memoria Investigaciones en Ingeniería, núm. 28 (2025). pp. 71-84
https://doi.org/10.36561/ING.28.7
ISSN 2301-1092 ISSN (en línea) 2301-1106 Universidad de Montevideo, Uruguay
80
5. Resultados del análisis de los modelos con los coeficientes estáticos. - El análisis de resultados se encuentra en
función a los objetivos específicos, que consideran la variación del periodo para los primeros casos modales de
traslación y rotación, el análisis de la deriva de entrepiso y comparación entre el análisis convencional y usando los
modelos ISE estáticos, y la comparación de los esfuerzos cortantes.
5.1. Periodo fundamental con el modelo de Winkler y Pasternak. - Al incorporar los coeficientes estáticos de
Winkler y Pasternak al modelo estructural se llegó a determinar que existe una variación en el periodo fundamental
de la edificación poco significativa. En la Tabla VI se puede observar que el periodo fundamental se incrementó en
un máximo de 2.46% para el modelo de Winkler y en 2.29% para el modelo de Pasternak. La utilización de los
coeficientes estáticos de Interacción Suelo Estructura (ISE) influyeron mínimamente en los modos de vibración de la
estructura.
Modo
Modelo
Convencional
Winkler
Pasternak
% de
Variación
Winkler
% Δ
% de
Variación
Pasternak
% Δ
Modal
1
0.568
0.567
2.46%
2.29%
Modal
2
0.448
0.448
1.56%
1.56%
Modal
3
0.313
0.311
2.24%
1.61%
Tabla VI. - Porcentajes de variación de los periodos
En la Figura VII se aprecia que mediante la incorporación de los coeficientes de rigidez al análisis para el tipo de
suelo y estrato definido en el estudio geotécnico y de mecánica de suelos, se obtuvo que el incremento del periodo
fundamental no fue muy significativo.
Figura VII. - Periodos obtenidos con los coeficientes estáticos de Winkler y Pasternak
5.2. Deriva de entrepiso del modelo estructural. - Respecto a la deformación lateral de la estructura, en la Tabla VII
se muestran las derivas de entrepiso de la estructura en ambas direcciones, con la base empotrada y con la
incorporación de los coeficientes estáticos de Winkler y Pasternak.
Dirección - XX
Dirección - YY
Nivel
Modelo
Empotrado
Winkler
Pasternak
Modelo
Empotrado
Winkler
Pasternak
Azotea
0.0042
0.0044
0.0044
0.0017
0.0017
0.0017
Story5
0.0044
0.0047
0.0047
0.0017
0.0018
0.0018
Story4
0.0040
0.0042
0.0042
0.0019
0.0020
0.0020
Story3
0.0043
0.0045
0.0045
0.0019
0.0019
0.0019
Story2
0.0040
0.0043
0.0043
0.0016
0.0017
0.0017
Story1
0.0030
0.0033
0.0034
0.0010
0.0011
0.0011
Semisótano
0.0008
0.0012
0.0012
0.0001
0.0001
0.0001
Tabla V I I .- Derivas en la dirección XX y YY
J. Contreras, G. Villarreal Castro
Memoria Investigaciones en Ingeniería, núm. 28 (2025). pp. 71-84
https://doi.org/10.36561/ING.28.7
ISSN 2301-1092 ISSN (en línea) 2301-1106 Universidad de Montevideo, Uruguay
81
En la Tabla VIII se muestran los porcentajes de variación de la deformación lateral de la estructura con los coeficientes
de Winkler y Pasternak, se llegó a determinar que existe un incremento de las derivas al utilizar los coeficientes
estáticos de Winkler y Pasternak. La variacion es significativa en el nivel que se encuentra en contacto con la losa de
cimentacion, el nivel definido como semisótano, en vista que la deformación lateral se incrementó en 40.03% con
Winkler y 40.69% con Pasternak en la dirección XX de la estructura. En la dirección YY de la estructura, que presenta
mucha mayor rigidez que en la direccion XX, el porcentaje de incremento en la deriva en el nivel del semisótano llegó
hasta el 26.70% con Winkler y 21.72% con Pasternak. En el primer piso y pisos intermedios la deriva se incrementó
en un maximo de 10.24% para ambos modelos estáticos.
Dirección - XX
Dirección - YY
Nivel
Modelo
Empotrado
Winkler
% Δ
Pasternak
% Δ
Modelo
Empotrado
Winkler
% Δ
Pasternak
% Δ
Azotea
0.0042
5.26%
5.12%
0.0017
3.43%
2.61%
Story5
0.0044
5.36%
5.25%
0.0017
3.27%
2.46%
Story4
0.0040
5.21%
5.21%
0.0019
3.01%
2.32%
Story3
0.0043
5.53%
5.54%
0.0019
3.06%
2.38%
Story2
0.0040
6.61%
6.63%
0.0016
3.53%
2.72%
Story1
0.0030
10.18%
10.24%
0.0010
5.16%
4.00%
Semisótano
0.0008
40.03%
40.69%
0.0001
26.70%
21.72%
Tabla VIII.- Porcentajes de variación de las derivas en los modelos
5.3. Esfuerzos cortantes en el modelo estructural. - Al evaluar los resultados de las cortantes en el modelo estructural
empotrado y los modelos con los coeficientes de Winkler y Pasternak, se obtuvo una variación poco significativa en
los entrepisos. En la Tabla IX se muestran los resultados de los esfuerzos cortantes de entrepiso de la estructura en
ambas direcciones, con base empotrada y con la incorporación de los coeficientes estáticos de Winkler y Pasternak.
Modelo
Empotrado
Winkler
Pasternak
Vx
(Tonf)
Vy
(Tonf)
Vx
(Tonf)
Vy
(Tonf)
Vx
(Tonf)
Vy
(Tonf)
Azotea
46.17
47.37
46.77
47.48
46.80
47.39
Story5
109.65
115.74
111.55
115.94
111.65
115.72
Story4
163.87
169.81
166.84
170.15
167.02
169.77
Story3
205.44
209.49
209.53
210.04
209.78
209.51
Story2
234.93
236.94
240.18
237.80
240.48
237.18
Story1
252.28
251.70
258.78
252.99
259.10
252.31
Semisótano
260.95
260.36
268.76
261.41
269.12
260.76
Tabla IX.- Fuerzas cortantes de entrepiso
En la Tabla X se aprecia que la cortante se incrementó en un 3.13% como máximo en la dirección XX para el modelo
con los coeficientes de Winkler y se incrementó en 3.13% como máximo en la dirección XX para el modelo con los
coeficientes de Pasternak, en el nivel del semisotano que se encuentra en contacto con la losa de cimentacion.
Los porcentajes fueron disminuyendo con cada entrepiso, por tanto se determinó que el esfuerzo cortante varía
principalmente en el nivel que se encuentra en el primer nivel, el nivel que se encuentra en contacto directo con la
losa de cimentacion.
Modelo
Empotrado
Winkler
Pasternak
Vx
(Tonf)
Vy
(Tonf)
Vx
% Δ
Vy
% Δ
Vx
% Δ
Vy
% Δ
Azotea
46.17
47.37
1.30%
0.23%
1.36%
0.05%
Story5
109.65
115.74
1.73%
0.17%
1.82%
0.02%
Story4
163.87
169.81
1.81%
0.20%
1.92%
0.03%
Story3
205.44
209.49
1.99%
0.26%
2.11%
0.01%
Story2
234.93
236.94
2.23%
0.36%
2.36%
0.10%
Story1
252.28
251.70
2.58%
0.51%
2.70%
0.24%
Semisótano
260.95
260.36
3.00%
0.40%
3.13%
0.15%
Tabla X.- Porcentajes de variación de fuerzas cortantes de entrepiso
J. Contreras, G. Villarreal Castro
Memoria Investigaciones en Ingeniería, núm. 28 (2025). pp. 71-84
https://doi.org/10.36561/ING.28.7
ISSN 2301-1092 ISSN (en línea) 2301-1106 Universidad de Montevideo, Uruguay
82
6. Conclusiones y recomendaciones
Mediante el análisis de la estructura con la base empotrada y la estructura con los modelos de Interacción Suelo
Estructura estáticos de Winkler y Pasternak, se llegó a determinar que los coeficientes de rigidez pueden influir
significativamente en el comportamiento estructural de la edificación, pues se apreció un incremento significativo
de las derivas de entrepiso específicamente con mayor incidencia en los primeros niveles de la edificación, por
ende, se puede concluir que los modelos estáticos de ISE pueden influir y condicionar directamente el diseño
estructural de una edificación. Al respecto Barnaure & Manoli (2019) [9] señalan respecto a las estructuras de
concreto armado, que la ISE puede a veces dar lugar a un comportamiento sísmico desfavorable, siendo algunos
de los efectos desfavorables aquellos relacionados con el incremento de los desplazamientos absolutos o de las
derivas de piso, como resultado estos efectos pueden dar lugar a un riesgo de golpeteo entre edificios adyacentes,
a un aumento de las fuerzas o de las exigencias de ductilidad. Por tanto, se puede concluir que el uso de los
coeficientes estáticos de Winkler y Pasternak pueden ser usados para obtener un mayor nivel de exactitud en el
análisis y diseño estructural de edificaciones mediante un análisis modal espectral.
Se llega a concluir que la variación del periodo fundamental de la estructura no fue significativa, considerando
que la variación entre el modelo convencional y los modelos con los coeficientes ISE de Winkler y Pasternak se
encuentran por debajo del 5% de variación. Se debe considerar que el resultado está condicionado al sistema
estructural de la edificación que fue propuesta con muros a corte, no siendo el resultado aplicable a la tipología
de estructuras de menor rigidez como las edificaciones enrticos.
Se llega a concluir que la variación en las derivas de entrepiso es significativa, específicamente en el nivel que se
encuentra en contacto con la losa de cimentación y que transmite las cargas al suelo. Se determinó que esta
variación es del 40% en la dirección XX de la estructura, dirección que presenta menor rigidez. Mientras que en
la dirección YY el máximo incremento de las derivas fue del 26%. Mediante estos resultados se puede aseverar
que los modelos estáticos de Winkler y Pasternak tienen influencias significativas en las deformaciones laterales
de una edificación de concreto con losa de cimentación.
Se llega a concluir que la variación en los esfuerzos cortantes no fue significativa, en vista que los porcentajes de
variación se encuentran por debajo del 5% al comparar la estructura con la cimentación empotrada y las estructuras
con los modelos ISE de Winkler y Pasternak.
Tras haber realizado el estudio comparativo de una estructura empotrada con los modelos estáticos de ISE de
Winkler y Pasternak es recomendable incorporar el uso de los coeficientes de rigidez de ambos modelos en la
norma peruana E030, en vista que se comprobó que existe una influencia significativa en las deformaciones
laterales que afectan independientemente al periodo de vibración de la estructura y la distribución de cortantes de
entrepiso.
Es recomendable realizar estudios en estructuras aporticadas, que, de acuerdo al resultado encontrado en el
comportamiento estructural, pueden ser más afectadas por las derivas de entrepiso, aspecto que podría colocar a la
estructura en mayor riesgo de sufrir deformaciones inelásticas, por tanto, mediante la utilización de estos modelos
estáticos se proporciona una mayor exigencia y precisión en el análisis y diseño estructural.
J. Contreras, G. Villarreal Castro
Memoria Investigaciones en Ingeniería, núm. 28 (2025). pp. 71-84
https://doi.org/10.36561/ING.28.7
ISSN 2301-1092 ISSN (en línea) 2301-1106 Universidad de Montevideo, Uruguay
83
Referencias
[1] Aristizábal-Ochoa J. D., “Estructuras de Vigas Sobre Suelos Elásticos de Rigidez Variable”. 1987. Universidad
Nacional, Medellín, Colombia.
[2] Bao, T. & Liu, Z. Evaluation of Winkler Model and Pasternak Model for Dinamyc Soil- Structure Interaction
Analysis of Structures partially Embedded in Soils. 2019, Michigan Technological University. USA.
[3] Barnaure M. y Manoli D., Unfavourable seismic behaviour of reinforced concrete structures
due to soil structure interaction, 2019. Technical University of Civil Engineering, Bucharest, Romania.
[4] Fernández, Fernández & Cobelo, W. Influencia de la interacción suelo-estructura estática en edificios de 100
metros de altura. 2022. Artículo de Investigación. Ingeniería y Desarrollo, vol. 41, núm. 2, pp. 213-232, 2023.
https://doi.org/10.14482/inde.41.02.201.456
[5] MVCS (Ministerio de Vivienda, Construcción y Saneamiento). Norma E030. Diseño Sismorresistente. Lima - Perú.
[6] MVCS (Ministerio de Vivienda, Construcción y Saneamiento). Norma E060. Concreto Armado. Lima - Perú.
[7] Santana, A. Modelo Winkler para el Análisis de la Respuesta Dinámica de Estructuras Enterradas. 2010.
Universidad de Las Palmas de Gran Canaria.
[8] Obinna, U. Modelling of Soil- Structure Interaction. 2022, Structville Integrated Services Limited. USA.
https://structville.com/2022/03/modelling-of-soil-structure-interaction.html#google_vignette
[9] Oz I, Senel S.M., Palanci M. y Kalkan A., Effect of Soil-Structure Interaction on the Seismic
Response of Existing Low and Mid-Rise RC Buildings, 2020. MDPI, Applied Sciences.
[10] Villarreal, G. Interacción Sísmica Suelo-Estructura en Edificaciones con Plateas de cimentación. 2017, Primera
edición. Lima, Perú.
[11] Villarreal, G. Cerna, M. & Espinoza, C. Seismic Interaction of Soil-Structure in Buildings with Limited Ductility
Walls on Foundation Plates. Revista internacional de Ingeniería de Estructuras. 2021. Vol. 26, 1, p 153-178.
J. Contreras, G. Villarreal Castro
Memoria Investigaciones en Ingeniería, núm. 28 (2025). pp. 71-84
https://doi.org/10.36561/ING.28.7
ISSN 2301-1092 ISSN (en línea) 2301-1106 Universidad de Montevideo, Uruguay
84
Nota contribución de los autores:
1. Concepción y diseño del estudio
2. Adquisición de datos
3. Análisis de datos
4. Discusión de los resultados
5. Redacción del manuscrito
6. Aprobación de la versión final del manuscrito
JC ha contribuido en: 1, 2, 3, 4, 5 y 6.
GVC ha contribuido en: 1, 2, 3, 4, 5 y 6.
Nota de aceptación: Este artículo fue aprobado por los editores de la revista Dr. Rafael Sotelo y Mag. Ing. Fernando
A. Hernández Gobertti.