H. Ali, D. Uddin, A. A. Naqvi, U. Naeem, N. Akhtar, S. Shams, A. Karim
Memoria Investigaciones en Ingeniería, núm. 28 (2025). pp. 269-286
https://doi.org/10.36561/ING.28.16
ISSN 2301-1092 • ISSN (en línea) 2301-1106 – Universidad de Montevideo, Uruguay 284
[17] M. Mahmoudkhani and D. W. Keith, “Low-energy sodium hydroxide recovery for CO2 capture from atmospheric
air—Thermodynamic analysis,” Int. J. Greenh. Gas Control, vol. 3, no. 4, pp. 376–384, Jul. 2009, doi:
10.1016/j.ijggc.2009.02.003.
[18] W. R. Lee et al., “Exceptional CO 2 working capacity in a heterodiamine-grafted metal–organic framework,”
Chem. Sci., vol. 6, no. 7, pp. 3697–3705, 2015, doi: 10.1039/C5SC01191D.
[19] L. A. Darunte, K. S. Walton, D. S. Sholl, and C. W. Jones, “CO2 capture via adsorption in amine-functionalized
sorbents,” Curr. Opin. Chem. Eng., vol. 12, pp. 82–90, May 2016, doi: 10.1016/j.coche.2016.03.002.
[20] D. Wu et al., “Thermodynamic complexity of carbon capture in alkylamine-functionalized metal–organic
frameworks,” J. Mater. Chem. A, vol. 3, no. 8, pp. 4248–4254, Feb. 2015, doi: 10.1039/C4TA06496H.
[21] Z. Yuan, M. R. Eden, and R. Gani, “Toward the Development and Deployment of Large-Scale Carbon Dioxide
Capture and Conversion Processes,” Ind. Eng. Chem. Res., vol. 55, no. 12, pp. 3383–3419, Mar. 2016, doi:
10.1021/acs.iecr.5b03277.
[22] “Maximum and Comparative Efficiency Calculations for Integrated Capture and Electrochemical Conversion of
CO2 | ACS Energy Letters.” Accessed: Sep. 24, 2024. [Online]. Available:
https://pubs.acs.org/doi/10.1021/acsenergylett.3c02489
[23] L. Joss, M. Hefti, Z. Bjelobrk, and M. Mazzotti, “On the Potential of Phase-change Adsorbents for CO2 Capture
by Temperature Swing Adsorption,” Energy Procedia, vol. 114, pp. 2271–2278, Jul. 2017, doi:
10.1016/j.egypro.2017.03.1375.
[24] A. Ntiamoah, J. Ling, P. Xiao, P. A. Webley, and Y. Zhai, “CO2 Capture by Temperature Swing Adsorption: Use
of Hot CO2-Rich Gas for Regeneration,” Ind. Eng. Chem. Res., vol. 55, no. 3, pp. 703–713, Jan. 2016, doi:
10.1021/acs.iecr.5b01384.
[25] E. S. Sanz-Pérez, C. R. Murdock, S. A. Didas, and C. W. Jones, “Direct Capture of CO 2 from Ambient Air,”
Chem. Rev., vol. 116, no. 19, pp. 11840–11876, Oct. 2016, doi: 10.1021/acs.chemrev.6b00173.
[26] J. A. Mason, K. Sumida, Z. R. Herm, R. Krishna, and Jeffrey. R. Long, “Evaluating metal–organic frameworks
for post-combustion carbon dioxide capture via temperature swing adsorption,” Energy Environ. Sci., vol. 4, no. 8, p.
3030, 2011, doi: 10.1039/c1ee01720a.
[27] “Electrochemical Approaches for CO2 Conversion to Chemicals: A Journey toward Practical Applications |
Accounts of Chemical Research.” Accessed: Sep. 25, 2024. [Online]. Available:
https://pubs.acs.org/doi/10.1021/acs.accounts.1c00674
[28] “Techno-economic Analysis of Metal–Organic Frameworks for Hydrogen and Natural Gas Storage | Energy &
Fuels.” Accessed: Sep. 24, 2024. [Online]. Available: https://pubs.acs.org/doi/10.1021/acs.energyfuels.6b02510
[29] T. Ahmed, “Chapter 3 - Natural Gas Properties,” in Equations of State and PVT Analysis (Second Edition), T.
Ahmed, Ed., Boston: Gulf Professional Publishing, 2016, pp. 189–238. doi: 10.1016/B978-0-12-801570-4.00003-9.
[30] M. S. Shafeeyan, W. M. A. Wan Daud, and A. Shamiri, “A review of mathematical modeling of fixed-bed columns
for carbon dioxide adsorption,” Chem. Eng. Res. Des., vol. 92, no. 5, pp. 961–988, May 2014, doi:
10.1016/j.cherd.2013.08.018.
[31] J. L. Plawsky, M. Ojha, A. Chatterjee, and P. Wayner, “Review of the effects of surface topography, surface
chemistry, and fluid physics on evaporation at the contact line,” Chem. Eng. Commun., vol. 196, pp. 658–696, May
2009, doi: 10.1080/00986440802569679.
[32] “Water and Metal–Organic Frameworks: From Interaction toward Utilization | Chemical Reviews.” Accessed:
Sep. 25, 2024. [Online]. Available: https://pubs.acs.org/doi/10.1021/acs.chemrev.9b00746