M. Shakaib, M. Ehtesham ul Haque, S. M. Fakhir Hasani
Memoria Investigaciones en Ingeniería, núm. 29 (2025). pp. 54-73
https://doi.org/10.36561/ING.29.5
ISSN 2301-1092 • ISSN (en línea) 2301-1106 – Universidad de Montevideo, Uruguay
71
References
[1] Chen, M., & Li, Z. (2025). Conceptional design of passive system-level battery fire prevention device based on
Tesla valve channel and phase change material. Journal of Energy Storage, 107, Article e114942.
https://doi.org/10.1016/j.est.2024.114942
[2] Chen, W.H., Zhing, M.H., Nguyen, T.B., Sharma, A.K., & Li, C.G. (2025). Hydrogen production in reverse tesla
valve reactor combining ethanol steam reforming and water gas shift reaction. Energy, 318, Article e134783.
https://doi.org/10.1016/j.energy.2025.134783
[3] Chou, C.Y., Kuo, G.C., & Chueh, C.C. (2024). Numerical analysis of thermal-hydraulic influence of geometric
flow baffles on multistage Tesla valves in printed circuit heat exchangers. Applied Thermal Engineering, 251, Article
e123601.
https://doi.org/10.1016/j.applthermaleng.2024.123601
[4] Du, G., Alsenani, T.R., Kumar, J., Alkhalaf, S., Alkhalifah, T., Alturise, F., Almujibah, H., Znaidia, S., & Deifalla,
A. (2023) Improving thermal and hydraulic performances through artificial neural networks: An optimization approach
for Tesla valve geometrical parameters. Case Studies in Thermal Engineering, 52, Article e103670.
https://doi.org/10.1016/j.csite.2023.103670
[5] Gamboa, A.R., Morris, C.J., & Forster, F.K. (2005) Improvements in Fixed-Valve Micropump Performance
Through Shape Optimization of Valves. Journal of Fluids Engineering, 127(2), 339–346.
https://doi.org/10.1115/1.1891151
[6] Hai, T., Rahman, M.A., Aksoy, M., Zhou, J., Alenazi, M.J.F., Singh, N.S.S., Zain, J.M., & Jawawi, D.N.A. (2024).
Investigating the performance of the Tesla valve channel in a photovoltaic thermal system through numerical
simulation: Evaluation from the standpoint of thermodynamic laws. International Communications in Heat and Mass
Transfer, 159, Article e108197.
https://doi.org/10.1016/j.icheatmasstransfer.2024.108197.
[7] Han, Q., Liu, Z., Yang, S., Han, J., Wang, Z., Miao, J., & Li, W. (2024). The role of Tesla valves in microchannel
flow boiling. International Journal of Heat and Mass Transfer, 234, Article e126148.
https://doi.org/10.1016/j.ijheatmasstransfer.2024.126148
[8] Huang, F., Ren, L., Xie, S., Leng, M., & Liao, P (2024). Numerical study of flow characteristics and heat transfer
mechanism in Tesla valve tube. Results in Engineering, 21, Article e101795.
https://doi.org/10.1016/j.rineng.2024.101795
[9] Jiang, E., Wang, W., Miao, J., & Zhang, H. (2025). Effect of the Tesla Valve on the heat transfer performance and
the suppression of pressure drop oscillation in a liquid cooling loop. International Journal of Thermal Sciences, 207,
Article e109356.
https://doi.org/10.1016/j.ijthermalsci.2024.109356
[10] Khabarova, D.F, Podzerko, A.V., & Spiridonov, E.K. (2017). Experimental Investigation of Fluidic Diodes.
Procedia Engineering. 206, 93–98.
https://doi.org/10.1016/j.proeng.2017.10.443
[11] Liu, Z., Shao, W.Q., Sun, Y., & Sun, B.H. (2022). Scaling law of the one-direction flow characteristics of
symmetric Tesla valve. Engineering Applications of Computational Fluid Mechanics, 16(1). 441–452.
https://doi.org/10.1080/19942060.2021.2023648