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Summary. - Optimization problems arising in multiple fields of study demand efficient 

algorithms that can exploit modern parallel computing platforms. The remarkable development of 

machine learning offers an opportunity to incorporate learning into optimization algorithms to 

efficiently solve large and complex problems. This article explores Virtual Savant, a paradigm that 

combines machine learning and parallel computing to solve optimization problems. Virtual Savant 

is inspired in the Savant Syndrome, a mental condition where patients excel at a specific ability far 

above the average. In analogy to the Savant Syndrome, Virtual Savant extracts patterns from 

previously-solved instances to learn how to solve a given problem in a massively-parallel fashion. 

In this article, Virtual Savant is applied to three optimization problems related to software 

engineering, task scheduling, and public transportation. The efficacy of Virtual Savant is evaluated 

in different computing platforms and the experimental results are compared against exact and 

approximate solutions for both synthetic and realistic instances of the studied problems. Results 

show that Virtual Savant can find accurate solutions, effectively scale in the problem dimension, 

and take advantage of the availability of multiple computing resources. 

Keywords: machine learning; optimization; next release problem; heterogeneous computing 

scheduling problem; bus synchronization problem. 

Resumen. - Los problemas de optimización que surgen en múltiples campos de estudio 

demandan algoritmos eficientes que puedan explotar las plataformas modernas de computación 

paralela. El notable desarrollo del aprendizaje automático ofrece la oportunidad de incorporar el 

aprendizaje en algoritmos de optimización para resolver problemas complejos y de grandes 

dimensiones de manera eficiente. Este artículo explora Savant Virtual, un paradigma que combina 

aprendizaje automático y computación paralela para resolver problemas de optimización. Savant 

Virtual está inspirado en el Síndrome de Savant, una condición mental en la que los pacientes se 

destacan en una habilidad específica muy por encima del promedio. En analogía con el Síndrome 

de Savant, Savant Virtual extrae patrones de instancias previamente resueltas para aprender a 

resolver un determinado problema de optimización de forma masivamente paralela. En este 

artículo, Savant Virtual se aplica a tres problemas de optimización relacionados con la ingenier ı́a 

de software, la planificación de tareas y el transporte público. La eficacia de Savant Virtual se 

evalúa en diferentes plataformas informáticas y los resultados se comparan con soluciones exactas 

y aproximadas para instancias tanto sintéticas como realistas de los problemas estudiados. Los 

resultados muestran que Savant Virtual puede encontrar soluciones precisas, escalar eficazmente 

en la dimensión del problema y aprovechar la disponibilidad de múltiples recursos de cómputo. 

Palabras Clave: aprendizaje automático; optimización; problema del próximo lanzamiento; 

planificación en sistemas de cómputo heterogéneos; problema de sincronización de autobuses. 
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1. Introduction. - The increasing complexity of optimization problems arising in different fields 

of study requires algorithms that demand large computing resources [1]. Simultaneously, parallel 

computing has become a key piece in scientific computing, as it provides the resources needed to 

solve complex real-world problems that cannot be addressed using classic sequential systems [2]. 

Consequently, widespread parallel architectures have led to an increase in the adoption of parallel 

algorithms that can take advantage of the availability of multiple computing resources. 

 

Software developers need to implement parallel programs to take profit from current architectures. 

This requires highly-skilled programmers that can design parallel programs from scratch or 

redesign legacy sequential implementations to profit from modern parallel architectures. Thus, 

there is an increased interest in techniques that can automatically generate elastic programs that 

can fully exploit highly-parallel computer platforms and scale in the number of computing 

resources [3]. The current growing interest in machine learning techniques comes at hand to deal 

with this problem. 

 

The fields of optimization and machine learning are closely related. However, the vast majority of 

research has explored one direction of this relationship, i.e., optimization applied to machine 

learning techniques (e.g., parameter optimization in machine learning models, feature selection 

problems) [4]. The inverse, i.e., applying machine learning to solve optimization problems, while 

explored [5,6], still has plenty of room for contribution. 

 

This article deals with VS, a novel paradigm that takes advantage of machine learning and parallel 

computing to address complex optimization problems [7]. VS is inspired in the Savant Syndrome, 

a mental condition where patients excel at certain abilities far above the average. In analogy to the 

Savant Syndrome, VS uses machine learning to find patterns that allow solving the problem at 
hand. These patterns are learned from a set of previously-solved instances of the problem. Due to 

its design, VS can be executed in massively-parallel computing architectures, significantly 

reducing execution times and effectively scaling in the problem instance. 

 

The remainder of this document is organized as follows. Section 2 outlines the VS paradigm. Then, 

Section 3 presents the application and experimental evaluation of VS when solving three 

optimization problems. Finally, Section 4 presents the main conclusions and lines of future work. 
 

2. Learning for optimization: Virtual Savant. -  The Savant Syndrome is a rare mental condition 
where patients with significant mental disabilities develop certain abilities far above what would 
be considered average [8]. Patients with Savant Syndrome—known as savants—usually excel at a 
single specific activity, generally related to memory, rapid calculation, or artistic abilities. The 
main hypotheses state that savants learn through pattern recognition [9,10], solving problems 
without understanding their underlying principles.  
 
VS is a novel technique, inspired by the Savant Syndrome, that aims to learn how to solve a given 
optimization problem [7]. As an analogy to the Savant Syndrome, VS proposes using machine 
learning techniques to find patterns that allow solving the problem at hand. These patterns are 
learned from a set of problem instances previously solved by one (or several) reference 
algorithm(s) for the problem. VS does not require knowing the code of the reference algorithms it 
learns from, in the same way that real-life savants are unaware of the underlying principles related 
to their skill. The training of VS involves partitioning the problem instance, and like savants, VS 
can derive global solutions by combining smaller pieces. 
 
VS is trained using previously-solved problem instances. Learning is solely based on the input (i.e., 
the problem instance) and the output (i.e., the solution) computed by one or several reference 
algorithms. Each solved problem instance yields as many training examples as variables in the 
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problem being solved. Once the training set is generated, a supervised machine learning model is 
trained over that set. 
 
After training, VS can solve new—unseen—problem instances by following a two-phase process 
comprised of prediction and improvement. In the prediction phase, the trained classifier is used to 
predict a solution to a new, unseen, problem instance. The output of the prediction phase is a 
probability distribution 𝑃(�̂�𝑖) for each of the 𝑖 variables in the problem. The improvement phase 
involves generating multiple candidate solutions following those probability distributions 𝑃(�̂�𝑖). 
Each of these candidate solutions are refined using search procedures and heuristics (e.g., local 
search, greedy heuristic). Corrective functions may be included in the improvement operator to 
ensure that the returned solution satisfies all problem constraints. Finally, all solutions are gathered, 
and the best overall solution is returned. 
 
Thanks to its design, VS can be run in a massively-parallel fashion. In the prediction phase, 
predictions can be made in parallel by using multiple copies of the same trained classifier, since 
each element in the problem is learned independently. After label probabilities are computed for 
each variable, multiple candidate solutions can be built and improved in parallel. Thus, VS can 
take advantage of available computing resources to improve its search of the solution space, leading 
to better solutions. Figure I outlines the complete workflow of VS when running in parallel. 
 

 
Figure I. Parallel VS workflow. 

 

3. Applications of Virtual Savant. - This section describes the application and experimental 

analysis of VS over three optimization problems. 
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3.1. Next Release Problem. - The Next Release Problem (NRP) is a problem in Software 

Engineering that consists of selecting a subset of requirements or features to include in the next 

release of a software product, according to their expected revenues [11].  

The goal is maximizing the total revenue without incurring in a total cost that exceeds the available 

budget. 

 

At a lower level of abstraction, the NRP can be characterized as a specific variant of the 0/1 

Knapsack Problem (0/1 KP), a classical NP-hard combinatorial optimization problem [12]. 

Equation 1 outlines the problem formulation, where decision variables 𝑥𝑘 ∈ {0,1} indicate whether 

the corresponding item is included (1) or not (0) in the knapsack. The knapsack capacity is 

analogous to the budget in the NRP formulation while items model the possible requirements to 

include in the next software release, each with an associated cost (i.e., the item's weight) and a 

given revenue (i.e., the item's profit). 

 

𝑎𝑟𝑔𝑚𝑎𝑥(∑ 𝑝𝑘𝑥𝑘
𝑛
𝑘=1 | ∑ 𝑤𝑘𝑥𝑘

𝑛
𝑘=1 ≤ 𝐶)   [Eq. 1] 

 

In the case of the NRP, a dataset of instances solved by an exact algorithm is used to train VS. The 

training vector corresponding to one requirement includes the following features: the cost of the 

requirement, the revenue the requirement renders, and the total budget (which is fixed for all 

requirements in a given problem instance). The classification label is a binary value, indicating 

whether the requirement is to be included (1) or not (0) in the next software release, according to 

the reference algorithm. The VS implementation for solving the NRP used SVMs as supervised 

machine learning classifiers. The training set was built using problem instances solved by the 

Nemhauser-Ullmann algorithm, which computes exact solutions for the NRP [13,14]. 

 

Two different proposals were implemented for the improvement phase. The first scheme applies a 

simple local search heuristic to each generated solution, which performs random modifications to 

the candidate solution to exclude or include requirements. The second improvement scheme 

consists of correction and improvement operators inspired by a popular greedy strategy that selects 

requirements to include or exclude based on their revenue/cost ratio. 

 

A thorough study of the training and prediction phases of VS was performed, and five different 

variants for the improvement phase of VS were analyzed for the problem. Experimental evaluation 

was performed using a publicly-available benchmark of problem instances of varying size and 

correlation between the revenue and the cost of the requirements, which is a measure of instance 

difficulty. The Nemhauser-Ullmann algorithm, an exact method for the problem, was used as the 

reference algorithm for VS. 

 

Firstly, a brief comparison of different feature configurations was performed, which showed no 

significant differences among the considered options. Secondly, a study on the training set size—

required for accurate learning—was carried out.  Smaller subsets of 10%, 15%, 25%, 50%, and 

100% of the observations in dataset #1 in the benchmark were considered. Results showed that a 

training set built using 15% of the dataset was enough to make accurate predictions. Beyond that 

percentage, only marginal improvements were observed. Thirdly, model parameters were 

configured using cross-validation. 

https://doi.org/10.36561/ING.22.4


R. Massobrio 

 

Memoria Investigaciones en Ingeniería, núm. 22 (2022). pp. 29-39 

https://doi.org/10.36561/ING.22.4  

ISSN 2301-1092 • ISSN (en línea) 2301-1106 

33 

When considering only the efficacy of the prediction phase on unseen instances, VS was able to 

predict the exact solution with a median accuracy larger than 90% when grouping instances by 

their size and larger than 80% when grouping instances by their revenue/cost correlation. Detailed 

results are presented in boxplots in Figure II which show the accuracy achieved when grouping 

instances by size and correlation, respectively. 

 

 
 

Figure II. SVM accuracy to predict the optimal solution with varying size/correlation. 

 

The improvement phase in VS helps further refining the solutions generated in the prediction step. 

Experimental results showed that VS can compute highly-accurate solutions. Among the five 

improvement strategies devised, the simplest variant (a greedy mechanism that first corrects the 

solution and then improves it, based on the revenue/cost ratio of requirements) was the one that 

achieved the best results. The solutions computed by the VS version implementing this greedy 

mechanism were within 1% from the optima in all studied instances. Furthermore, VS was able to 

generate the optimal solution in many cases, and the computed solutions were within 0.2% (in 

median) of the known optima computed by the exact algorithm used as a reference. It was also 

observed that, interestingly, difficult instances for the reference algorithm were not necessarily 

difficult to solve for VS. 

 

A detailed experimental evaluation of VS applied to the NRP can be found in [15]. 
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3.2. Heterogeneous Computing Scheduling Problem. - The Heterogeneous Computing 

Scheduling Problem (HCSP) considers a heterogeneous computing system comprised of several 

resources (i.e., machines) and a set of tasks with variable computational requirements to be 

executed in the system. A task is defined as an atomic workload unit, i.e., it must be executed 

without interruptions and cannot be split into smaller chunks, which corresponds to a non-

preemptive scheduling model. The execution time of any individual task varies from one machine 

to another and is assumed to be known beforehand, following a static scheduling approach. The 

HCSP proposes finding a task-to-machine assignment that optimizes some quality metric. 

 

The scheduling problem addressed in this article focuses on optimizing the makespan, a well-

known optimization criterion related to the productivity of a computing system. Makespan is 

defined as the time between the start of the first task (in the set of tasks to be executed) and the 

completion of the last task. Makespan is considered as a measure of productivity (i.e., throughput) 

of computing systems. 

 

The mathematical formulation for the HCSP considers: 

• A set of tasks 𝑇 = {𝑡1, … , 𝑡𝑛} to be scheduled and executed on the system. 

• A set of heterogeneous machines 𝑀 = {𝑚1, … ,𝑚𝑚} 

• A function 𝐸𝑇 ∶ 𝑇 ×𝑀 → ℝ+ where 𝐸𝑇(𝑡𝑖 ,𝑚𝑗) indicates the execution time of task 𝑡𝑖  on 

machine 𝑚𝑗. 

The HCSP proposes finding an assignment function 𝑓 ∶ 𝑇 → 𝑀 that minimizes the makespan, 

defined by Equation 2. 

 

𝑚𝑎𝑘𝑒𝑠𝑝𝑎𝑛 = max
𝑚𝑗∈𝑀

{∑ 𝐸𝑇(𝑡𝑖 , 𝑚𝑗)𝑡𝑖∈𝑇,𝑓(𝑡𝑖)=𝑚𝑗
}   [Eq. 2] 

 

The VS implementation for the HCSP uses a custom SVM framework (xphi-LIBSVM [16]) for 

learning. SVMs are trained using MinMin as the reference algorithm, which is one of the most 

widely used methods for solving the HCSP [17]. MinMin is a two-phase greedy scheduler that 

greedily picks the task that can be completed the soonest. Each task in the instance is considered 

individually during the training phase of VS. Therefore, each feature vector holds the execution 

time of one task on each machine and the classification label corresponds to the machine assigned 

to that task by the MinMin heuristic. Because tasks are independently assigned, VS can scale to 

problem instances with any number of tasks, without requiring any additional training process. A 

simple LS heuristic is applied over each candidate solution in VS, which iteratively moves a 

randomly-chosen task from the most loaded machine, i.e., the one with the highest completion 

time, to a machine selected among a subset of the least loaded ones.  

 

The results computed by VS were compared to those computed by MinMin, the algorithm used by 

VS as a reference. Experimental results showed that VS outperformed MinMin in most of 180 

problem instances, achieving up to 15% of improvement in terms of makespan. Detailed results 

are outlined in the boxplot in Figure III, which shows the ratio of makespan between VS and 

MinMin for different problem instances. Additionally, VS showed excellent scalability properties 

when increasing both the computational resources and the problem dimensions. 
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Figure III. Ratio of makespan: VS over MinMin for the HCSP. 

 

Then, VS was evaluated on different computing platforms. Experimental evaluation over four 

different computing infrastructures showed that the massively-parallel design of VS allowed taking 

advantage of available computing resources to find accurate solutions for the HCSP. Increasing the 

number of parallel resources helped reducing the execution time of the prediction phase and did 

not increase the overall execution time, even though the computational demand of VS increases 

with the number of resources available. Besides, the makespan value (that evaluates the quality of 

the obtained results) generally decreased (i.e., improves) when increasing the number of threads. 

 

Finally, VS was evaluated when solving very large problem instances—larger than those used 

during training—comprised of 32768 and 65536 tasks and 16 machines. Similar results to those 

obtained for the smaller instances were found, where the speedup increased with the number of 

cores, with a loss due to Hyper-Threading when the number of spawned threads exceeded the 

number of physical cores. However, speedup values were better for the largest instances studied. 

More details of VS applied to the HCSP can be found in [18]. 

 

3.3. Bus Synchronization Problem. - Public transportation planners often prefer network 

topologies comprised of few, short, and densely interconnected bus lines. This design is good from 

an operational point of view, because it allows operating higher bus frequencies with smaller 

vehicle fleets. However, it requires passengers to make more bus transfers instead of traveling 

directly from origin to destination. Passengers dislike transfers: studies have shown that the 

perceived time when waiting for a bus or when walking between bus stops can be up to 2.5 times 

larger than the real time spent [19]. Consequently, reducing waiting times for passengers when 

transferring between buses is a desirable goal from the point of view of citizens. 

 

The Bus Synchronization Problem (BSP) consists in finding the headways of each bus line in a 

public transportation system, which allow maximizing the number of synchronized bus transfers. 

https://doi.org/10.36561/ING.22.4
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A bus transfer is considered synchronized when the waiting time experienced at the transfer bus 

stop does not exceed a given threshold, defined according to the maximum time passengers are 

willing to wait for the transfer.  

 

The VS implementation for the BSP uses Random Forests (RF), which are trained using the 

solutions computed by an Evolutionary Algorithm (EA) used as a reference [20]. The best solution 

found on each independent execution of the reference EA over each training instance is used to 

build the dataset of solved BSP instances. Two different classifiers are trained: one to predict the 

headway of the inbound line and another one for the headway of the outbound line.  

 

The improvement operator consists of a simple LS that selects a bus line in each step and randomly 

changes its assigned headway according to a uniform distribution in the range of valid headways 

for the line. The change is accepted if the quality of the solution improves and is discarded 

otherwise. The quality of the solution is measured through a score function, which reflects the 

problem formulation, and is used by the reference EA as a fitness function. The score function 

accounts for the number of synchronized transfers and their corresponding demands. 

 

The experimental analysis was performed using two sets of problem instances: one comprised of 

130 synthetic instances and the other of 45 realistic instances modeling the public transportation 

network in Montevideo, Uruguay. VS was able to compute accurate solutions in both sets of 

problem instances. In the synthetic dataset, VS computed solutions within 1.2% of the reference 

EA in median when only considering the prediction phase and within 0.2% in median when 

including a 5000-step LS improvement operator. In the realistic instances from Montevideo, VS 

computed solutions 99.5% as good as the reference EA in median when considering only the 

prediction phase and outperformed the EA in eleven out of fifteen problem instances when adding 

a 5000-step LS improvement operator. 

 

The BSP allowed studying the applicability of the VS paradigm to a real-world optimization 

problem and evaluating its effectiveness with respect to baseline solutions. A more complex 

problem decomposition than those applied for the NRP and HCSP was needed to solve the BSP. 

The applied problem decomposition involved training two separate machine learning classifiers. 

Additionally, the implementation was done using RF---in contrast with the two previous 

applications of VS which used SVM---showing the versatility and adaptability of VS. The 

experimental evaluation was performed over larger instances (in terms of the number of bus lines 

and synchronization nodes) than those considered in the training phase. The experimental results 

highlight the scalability properties of VS in terms of the problem dimension, which were also noted 

in the other problems addressed in this article. 

 

The complete application of VS for the BSP is reported in [21]. 

 

4. Conclusions and future work. - This article explored Virtual Savant, a paradigm inspired by 

the Savant Syndrome that combines machine learning and parallel computing to solve complex 

optimization problems. Implementations of VS were developed and evaluated for solving three 

optimization problems: i) the NRP, a well-known problem from software engineering that was 

modeled as a 0/1 KP; ii) the HCSP, a classic task scheduling problem relevant in modern computing 

infrastructures; and iii) the BSP, an optimization problem related to public transportation networks. 
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Due to its flexible design, VS can use different machine learning algorithms for the training and 

prediction phases. In the studied problems two different classifiers were used: SVMs for the NRP 

and HCSP; and RF for the BSP. Similarly, the design of VS is flexible in terms of the algorithm(s) 

used as a reference. On the studied problems, both exact and approximate algorithms were used as 

a reference. 

 

The scalability of VS was evaluated both in terms of the problem dimension and in the use of 

computational resources. Regarding the problem dimension, VS was evaluated over problem 

instances much larger than those seen during training. This is a very interesting feature of the design 

of VS, since it allows solving problem instances that may not be tractable for the algorithm used 

as a reference. The scalability in the use of computational resources was evaluated on the HCSP. 

For this problem, four different computing platforms were considered, including shared- and 

distributed-memory architectures. Results showed that the massivelyparallel design of VS allows 

efficiently using available computing resources. 

 

The work presented in this article was intended to be a step forward towards bringing closer the 

machine learning and optimization research fields, but many lines of work remain to be addressed.  

Regarding the training and prediction phase of VS, other machine learning algorithms need to be 

considered. One promising line of work is to incorporate ensemble learning to VS. These classifiers 

could even be trained using different optimization algorithms as a reference or over different sets 

of solved instances. 

 

Regarding the improvement phase of VS, other operators should be considered and evaluated. 

Tailored improvement operators that incorporate problem-specific techniques could be easily 

included in VS. Additionally, another interesting line of work would be to use the pool of candidate 

solutions generated in the prediction phase of VS to initialize a population-based metaheuristic, 

e.g., an EA. 

 

Other optimization problems, potentially with harder constraints or dependencies between the 

problem variables, should also be considered. Furthermore, addressing multiobjective optimization 

problems is an interesting line of future work. For this purpose, a domain decomposition approach 

could be implemented, using a linear combination of the objective functions and training a set of 

classifiers with different weights. 
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