Efecto del ángulo de fibra sobre las propiedades mecánicas del polímero reforzado de fibra natural a través del análisis numérico

Autores/as

DOI:

https://doi.org/10.36561/ING.25.5

Palabras clave:

Fibra natural, Materiales compuestos, Análisis numérico, Análisis de estructura, Respuesta vibratoria

Resumen

Este estudio se centra en el comportamiento mecánico de los compuestos de polímeros reforzados con fibra natural (NFRP), que están ganando prominencia como materiales sostenibles debido a su biodegradabilidad y eco-amistad. En este estudio, nuestro objetivo fue obtener una comprensión profunda del comportamiento mecánico de las NFRP seleccionadas. El análisis estructural estático se realizó para simular los efectos de tracción, mientras que el análisis vibratorio se realizó para predecir las frecuencias naturales. Los resultados indicaron que todas las fibras exhibieron estrés mínimo en el ángulo de 67.5 ° y el estrés máximo en el ángulo de 22.5 ° durante la prueba de tracción. Además, se produjo una deformación mínima en el ángulo de 0 °, mientras que se observó una deformación máxima en el ángulo de 67.5 °. Curiosamente, los NFRP exhibieron frecuencias naturales similares para los modos inferiores (1 y segundo), con alteraciones insignificantes debido a ángulos de fibra. El objetivo central de este estudio es mostrar la practicidad y la viabilidad de los NFRP investigados al emplear un análisis sofisticado de elementos finitos para anticipar su comportamiento material de antemano, lo que permite una comparación integral de las frecuencias naturales, tensiones y deformaciones con el polímero reforzado con fibra de carbono tradicional. (CFRP) Compuestos, explorando así el potencial de las NFRP como alternativas factibles.

Descargas

Los datos de descargas todavía no están disponibles.

Citas

J. S. Bradley, G. W. Hastings, and C. Johnson-Nurse, ‘Carbon fibre reinforced epoxy as a high strength, low modulus material for internal fixation plates’, Biomaterials, vol. 1, no. 1, 1980, doi: https://10.1016/0142-9612(80)90057-5.

S. Iqbal, T. Jamil, and S. Murtuza Mehdi, ‘Numerical simulation and validation of MWCNT-CFRP hybrid composite structure in lightweight satellite design’, Compos Struct, vol. 303, p. 116323, Jan. 2023, doi: https://10.1016/J.COMPSTRUCT.2022.116323.

M. Saafi, ‘Design and Fabrication of FRP Grids for Aerospace and Civil Engineering Applications’, J Aerosp Eng, vol. 13, no. 4, 2000, doi: 10.1061/(asce)0893-1321(2000)13:4(144).

F. M. Al-Oqla and S. M. Sapuan, ‘Natural fiber reinforced polymer composites in industrial applications: feasibility of date palm fibers for sustainable automotive industry’, J Clean Prod, vol. 66, pp. 347–354, Mar. 2014, doi: https://10.1016/J.JCLEPRO.2013.10.050.

G. Koronis, A. Silva, and M. Fontul, ‘Green composites: A review of adequate materials for automotive applications’, Compos B Eng, vol. 44, no. 1, pp. 120–127, Jan. 2013, doi: https://10.1016/J.COMPOSITESB.2012.07.004.

M. P. Ho et al., ‘Critical factors on manufacturing processes of natural fibre composites’, Compos B Eng, vol. 43, no. 8, pp. 3549–3562, Dec. 2012, doi: https://10.1016/J.COMPOSITESB.2011.10.001.

Y. Wu, C. Xia, L. Cai, A. C. Garcia, and S. Q. Shi, ‘Development of natural fiber-reinforced composite with comparable mechanical properties and reduced energy consumption and environmental impacts for replacing automotive glass-fiber sheet molding compound’, J Clean Prod, vol. 184, pp. 92–100, May 2018, doi: https://10.1016/J.JCLEPRO.2018.02.257.

‘Natural Fiber Composites Market Worth $5.83 Billion by 2019’. https://www.prnewswire.com/news-releases/natural-fiber-composites-market-worth-583-billion-by-2019-285331091.html (accessed Feb. 28, 2023).

M. Idicula, K. Joseph, and S. Thomas, ‘Mechanical performance of short banana/sisal hybrid fiber reinforced polyester composites’, Journal of Reinforced Plastics and Composites, vol. 29, no. 1, pp. 12–29, Jan. 2010, doi: https://10.1177/0731684408095033.

C. Alves et al., ‘Ecodesign of automotive components making use of natural jute fiber composites’, J Clean Prod, vol. 18, no. 4, pp. 313–327, Mar. 2010, doi: https://10.1016/J.JCLEPRO.2009.10.022.

P. Wambua, J. Ivens, and I. Verpoest, ‘Natural fibres: Can they replace glass in fibre reinforced plastics?’, Compos Sci Technol, vol. 63, no. 9, pp. 1259–1264, 2003, doi: https://10.1016/S0266-3538(03)00096-4.

N. Chand and M. Fahim, ‘Tribology of natural fiber polymer composites’.

Y. Li, T. Xie, and G. Yang, ‘Effects of polyphenylene oxide content on morphology, thermal, and mechanical properties of polyphenylene oxide/polyamide 6 blends’, J Appl Polym Sci, vol. 99, no. 5, pp. 2076–2081, Feb. 2006, doi: https://10.1002/app.22687.

R. C. Dante, D. A. Santamaria, and J. M. Gil, ‘Crosslinking and thermal stability of thermosets based on novolak and melamine’, J Appl Polym Sci, vol. 114, no. 6, pp. 4059–4065, Dec. 2009, doi: https://10.1002/app.31114.

G. Gündüz, D. Erol, and N. Akkaş, ‘Mechanical properties of unsaturated polyester-isocyanate hybrid polymer network and its E-glass fiber-reinforced composite’, J Compos Mater, vol. 39, no. 17, pp. 1577–1589, 2005, doi: https://10.1177/0021998305051086.

A. Sailesh, R. Arunkumar, and S. Saravanan, ‘Mechanical Properties and Wear Properties of Kenaf – Aloe Vera – Jute Fiber Reinforced Natural Fiber Composites’, Mater Today Proc, vol. 5, no. 2, pp. 7184–7190, Jan. 2018, doi: https://10.1016/J.MATPR.2017.11.384.

A. Shalwan and B. F. Yousif, ‘In State of Art: Mechanical and tribological behaviour of polymeric composites based on natural fibres’, Mater Des, vol. 48, pp. 14–24, Jun. 2013, doi: 10.1016/J.MATDES.2012.07.014.

T. Murugan and B. Senthil Kumar, ‘Studies on mechanical and dynamic mechanical properties of banana fibre nonwoven composite’, Mater Today Proc, vol. 39, pp. 1254–1258, Jan. 2021, doi: https://10.1016/J.MATPR.2020.04.155.

I. Ben Amor, H. Rekik, H. Kaddami, M. Raihane, M. Arous, and A. Kallel, ‘Effect of Palm Tree Fiber Orientation on Electrical Properties of Palm Tree Fiber-reinforced Polyester Composites’, http://dx.doi.org/10.1177/0021998309353961, vol. 44, no. 13, pp. 1553–1568, Dec. 2009, doi: https://10.1177/0021998309353961.

A. Gupta, A. Kumar, A. Patnaik, and S. Biswas, ‘Effect of different parameters on mechanical and erosion wear behavior of bamboo fiber reinforced epoxy composites’, Int J Polym Sci, vol. 2011, 2011, doi: https://10.1155/2011/592906.

M. Kumaresan, S. S, and K. .N, ‘Effect of fiber orientation on mechanical properties of sisal fiber reinforced epoxy composites’, vol. 18, pp. 289–294, Feb. 2015, doi: https://10.6180/jase.2015.18.3.09.

S. Ben Brahim and R. Ben Cheikh, ‘Influence of fibre orientation and volume fraction on the tensile properties of unidirectional Alfa-polyester composite’, Compos Sci Technol, vol. 67, no. 1, pp. 140–147, Jan. 2007, doi: https://10.1016/J.COMPSCITECH.2005.10.006.

B. Noolvi and S. Nagaraj, ‘Modal analysis of smart composite cantilever beams’, Mater Today Proc, vol. 27, pp. 1720–1722, Jan. 2020, doi: https://10.1016/J.MATPR.2020.03.643.

S. Dixit and S. S. Padhee, ‘Finite Element Analysis of Fiber Reinforced Hybrid Composites’, 2019. [Online]. Available: www.sciencedirect.comwww.materialstoday.com/proceedings2214-7853

J. K. Paul and S. Abdul kalam, ‘Mechanical Properties Characterization of Okra Fiber Based Green Composites & Hybrid Laminates’, 2017. [Online]. Available: www.sciencedirect.comwww.materialstoday.com/proceedings

S. B. R. Devireddy and S. Biswas, ‘Effect of Fiber Geometry and Representative Volume Element on Elastic and Thermal Properties of Unidirectional Fiber-Reinforced Composites’, J Compos, vol. 2014, pp. 1–12, Nov. 2014, doi: https://10.1155/2014/629175.

H. Akhavan and P. Ribeiro, ‘Natural modes of vibration of variable stiffness composite laminates with curvilinear fibers’, Compos Struct, vol. 93, no. 11, pp. 3040–3047, 2011, doi: https://10.1016/j.compstruct.2011.04.027.

M. Ashby, ‘Material property data for engineering materials’, 2021.

P. S. Shankar, K. T. Reddy, V. Chandra, and V. Chandra Sekhar, ‘Mechanical Performance and Analysis of Banana Fiber Reinforced Epoxy Composites’, 2013.

T. G. Yashas Gowda, M. R. Sanjay, K. Subrahmanya Bhat, P. Madhu, P. Senthamaraikannan, and B. Yogesha, ‘Polymer matrix-natural fiber composites: An overview’, Cogent Engineering, vol. 5, no. 1. Cogent OA, Jan. 01, 2018. doi: https://10.1080/23311916.2018.1446667.

M. Y. Khalid, A. Al Rashid, Z. U. Arif, M. F. Sheikh, H. Arshad, and M. A. Nasir, ‘Tensile strength evaluation of glass/jute fibers reinforced composites: An experimental and numerical approach’, Results in Engineering, vol. 10, Jun. 2021, doi: https://10.1016/j.rineng.2021.100232.

A. K. Mohanty, M. Misra, and G. Hinrichsen, ‘Biofibres, biodegradable polymers and biocomposites: An overview’, Macromolecular Materials and Engineering, vol. 276–277. pp. 1–24, 2000. doi: https://10.1002/(SICI)1439-2054(20000301)276:1<1::AID-MAME1>3.0.CO;2-W.

P. Wambua, J. Ivens, and I. Verpoest, ‘Natural fibres: Can they replace glass in fibre reinforced plastics?’, Compos Sci Technol, vol. 63, no. 9, pp. 1259–1264, 2003, doi: https://10.1016/S0266-3538(03)00096-4.

N. Saba, M. T. Paridah, and M. Jawaid, ‘Mechanical properties of kenaf fibre reinforced polymer composite: A review’, Construction and Building Materials, vol. 76. Elsevier Ltd, pp. 87–96, Feb. 01, 2015. doi: https://10.1016/j.conbuildmat.2014.11.043.

S. Jeyanthi and J. Janci Rani, ‘Improving Mechanical Properties by KENAF Natural Long Fiber Reinforced Composite for Automotive Structures’.

M. Rouway et al., ‘Prediction of Mechanical Performance of Natural Fibers Polypropylene Composites: A Comparison Study’, in IOP Conference Series: Materials Science and Engineering, IOP Publishing Ltd, Nov. 2020. doi: https://10.1088/1757-899X/948/1/012031.

R. Bhowmik, S. Das, D. Mallick, and S. S. Gautam, ‘Predicting the elastic properties of hemp fiber - A comparative study on different polymer composite’, in Materials Today: Proceedings, Elsevier Ltd, 2021, pp. 2510–2514. doi: https://10.1016/j.matpr.2021.09.562.

R. Potluri, ‘Mechanical Properties of Pineapple Leaf Fiber Reinforced Epoxy Infused with Silicon Carbide Micro Particles’, Journal of Natural Fibers, vol. 16, no. 1, pp. 137–151, Jan. 2019, doi: 10.1080/15440478.2017.1410511.

Y. Benveniste, ‘A NEW APPROACH TO THE APPLICATION OF MORI-TANAKA’S THEORY IN COMPOSITE MATERIALS’, 1987.

S. Bin Rayhan and M. M. Rahman, ‘Modeling elastic properties of unidirectional composite materials using Ansys Material Designer’, Procedia Structural Integrity, vol. 28, pp. 1892–1900, Jan. 2020, doi: https://10.1016/J.PROSTR.2020.11.012.

‘Ansys Mechanical Composite PrepPost (ACP) Advanced | Ansys Training’. https://www.ansys.com/training-center/course-catalog/structures/ansys-mechanical-composite-prepost-acp-advanced (accessed Mar. 02, 2023).

Descargas

Publicado

2023-12-22

Cómo citar

[1]
S. Anas Nisar y T. Jamil, «Efecto del ángulo de fibra sobre las propiedades mecánicas del polímero reforzado de fibra natural a través del análisis numérico», Memoria investig. ing. (Facultad Ing., Univ. Montev.), n.º 25, pp. 53–71, dic. 2023.

Número

Sección

Artículos