Uso de Material de Cambio de Fase para potenciar la Efectividad del Módulo Fotovoltaico

Autores/as

DOI:

https://doi.org/10.36561/ING.26.6

Palabras clave:

Fotovoltaica, Radiacion solar, Temperatura celular, Material de cambio de fase, Energía solar

Resumen

La utilidad y productividad de los paneles fotovoltaicos (PV) se ven significativamente afectadas por las temperaturas ambiente y de funcionamiento. Sin embargo, la influencia negativa de los climas cálidos en el rendimiento de los paneles fotovoltaicos se puede mitigar mediante técnicas de refrigeración innovadoras. Este trabajo de investigación tiene como objetivo investigar la implementación de material de cambio de fase (PCM) en la parte posterior de módulos solares para reducir la temperatura del panel y mejorar la producción de energía. En la parte posterior del panel se aplica un sistema híbrido que utiliza cera de soja para enfriar. Se han recopilado datos comparativos en varios días y se han analizado los resultados. Los resultados revelan que el uso de material de cambio de fase redujo la temperatura del panel hasta 18°C, provocando un aumento del 10,89% en la generación de electricidad en comparación con los paneles sin sistemas de refrigeración.

Descargas

Los datos de descargas todavía no están disponibles.

Citas

M. A. Sheikh, “Renewable energy resource potential in Pakistan,” Renew. Sustain. Energy Rev., vol. 13, no. 9, pp. 2696–2702, 2009, doi: 10.1016/j.rser.2009.06.029.

A. A. Naqvi, A. Ahmed, T. Bin Nadeem, L. A. Khan, and I. U. Ahad, “Energy and stress analysis of a hybrid photovoltaic thermal module,” Case Stud. Therm. Eng., vol. 47, no. January, p. 103114, 2023, doi: 10.1016/j.csite.2023.103114.

A. A. Naqvi, T. Bin Nadeem, A. Ahmed, M. Uzair, and S. A. A. Zaidi, “Techno-economic design of a grid-tied Photovoltaic system for a residential building,” Adv. Energy Res., vol. 8, no. 1, pp. 59–71, 2021, doi: 10.12989/eri.2021.8.1.059.

A. A. Naqvi, T. Bin Nadeem, A. Ahmed, and A. Ali Zaidi, “Designing of an off-grid Photovoltaic system with battery storage for remote location,” Tecciencia, vol. 16, no. 31, pp. 15–28, 2021, doi: 10.18180/tecciencia.2021.31.2.

Y. Jia, G. Alva, G. F.-R. and S. E. Reviews, and U. 2019, “Development and applications of photovoltaic–thermal systems: A review,” Elsevier, 2019.

M. Ahmed, A.; Naqvi, A. A.; Bin, T.; Uzair, “Experimental Investigation of Dust Accumulation on the Performance of the Photovoltaic Modules : a Case Study of Karachi , Pakistan,” Appl. Sol. Energy, vol. 57, no. 5, pp. 370–376, 2021, doi: 10.3103/S0003701X21050029.

A. A. Naqvi, A. Ahmed, M. Jamal, A. Majeed, A. Khizar, and B. Shaheer, “Performance Evaluation of Hybrid PVT Air Collector. A Comparative Approach,” GMSARN Int. J., vol. 16, no. 2, pp. 121–127, 2022.

A. N. Asad, A. Ahmed, and T. Bin Nadeem, “Efficiency Improvement of Photovoltaic Module by Air Cooling,” Appl. Sol. Energy (English Transl. Geliotekhnika), vol. 57, no. 6, pp. 517–522, 2021, doi: 10.3103/S0003701X21060049.

E. Skoplaki and J. A. Palyvos, “On the temperature dependence of photovoltaic module electrical performance: A review of efficiency/power correlations,” Sol. Energy, vol. 83, no. 5, pp. 614–624, 2009, doi: 10.1016/j.solener.2008.10.008.

P. M. Kumar, R. Anandkumar, D. Sudarvizhi, K. B. Prakash, and K. Mylsamy, “Experimental investigations on thermal management and performance improvement of solar PV panel using a phase change material,” AIP Conf. Proc., vol. 2128, 2019, doi: 10.1063/1.5117935.

M. A. Muhammad Uzair, Asad A. Naqvi, “Statistical Approach to select the Best Suitable Solar Model for Global Radiation : Case Study of Karachi , Pakistan,” Tecciencia, vol. 17, no. 32, pp. 17–28, 2022.

M. Uzair, A. A. Naqvi, and S. U. H. Kazmi, “Estimation of the Diffused Solar Irradiation on the Tilted Plane of Photovoltaic Solar Panels Estimación de la Irradiación Solar Difusa en el Plano Inclinado de Paneles Solares Fotovoltaicos Estimativa da Irradiação Solar Difusa no Plano Inclinado de Pain,” vol. 24, pp. 37–52, 2023.

A. A. N. Uzair, Muhammad and M. Uzair, “Numerical investigation to determine the optimal tilt angle of single slope solar still during summer season,” Tecciencia, vol. 17, no. 32, pp. 29–40, 2022.

J. H. Kim, S. H. Park, and J. T. Kim, “Experimental performance of a photovoltaic-thermal air collector,” Energy Procedia, vol. 48, pp. 888–894, 2014, doi: 10.1016/j.egypro.2014.02.102.

S. Diwania, A. S. Siddiqui, S. Agrawal, and R. Kumar, “Performance assessment of PVT-air collector with V-groove absorber: A theoretical and experimental analysis,” Heat Mass Transf. und Stoffuebertragung, vol. 57, no. 4, pp. 665–679, 2021, doi: 10.1007/s00231-020-02980-0.

N. Aste, F. Leonforte, and C. Del Pero, “Design, modeling and performance monitoring of a photovoltaic-thermal (PVT) water collector,” Sol. Energy, vol. 112, pp. 85–99, 2015, doi: 10.1016/j.solener.2014.11.025.

M. M. Sardouei, H. Mortezapour, and K. Jafari Naeimi, “Temperature distribution and efficiency assessment of different PVT water collector designs,” Sadhana - Acad. Proc. Eng. Sci., vol. 43, no. 6, pp. 1–13, 2018, doi: 10.1007/s12046-018-0826-x.

J. Yazdanpanahi, F. Sarhaddi, and M. Mahdavi Adeli, “Experimental investigation of exergy efficiency of a solar photovoltaic thermal (PVT) water collector based on exergy losses,” Sol. Energy, vol. 118, pp. 197–208, 2015, doi: 10.1016/j.solener.2015.04.038.

A. K. Hamzat, A. Z. Sahin, M. I. Omisanya, and L. M. Alhems, “Advances in PV and PVT cooling technologies: A review,” Sustain. Energy Technol. Assessments, vol. 47, no. June, p. 101360, 2021, doi: 10.1016/j.seta.2021.101360.

H. M. Ali, “Recent advancements in PV cooling and efficiency enhancement integrating phase change materials based systems – A comprehensive review,” Sol. Energy, vol. 197, no. November 2019, pp. 163–198, 2020, doi: 10.1016/j.solener.2019.11.075.

K. Velmurugan, S. Kumarasamy, T. Wongwuttanasatian, and V. Seithtanabutara, “Review of PCM types and suggestions for an applicable cascaded PCM for passive PV module cooling under tropical climate conditions,” J. Clean. Prod., vol. 293, p. 126065, 2021, doi: 10.1016/j.jclepro.2021.126065.

M. Tao, L. Zhenpeng, and Z. Jiaxin, “Photovoltaic panel integrated with phase change materials (PV-PCM): technology overview and materials selection,” Renew. Sustain. Energy Rev., vol. 116, no. September, p. 109406, 2019, doi: 10.1016/j.rser.2019.109406.

H. M. T. Al-Najjar et al., “Improving the Melting Duration of a PV/PCM System Integrated with Different Metal Foam Configurations for Thermal Energy Management,” Nanomaterials, vol. 12, no. 3, 2022, doi: 10.3390/nano12030423.

A. Hasan, S. J. McCormack, M. J. Huang, and B. Norton, “Evaluation of phase change materials for thermal regulation enhancement of building integrated photovoltaics,” Sol. Energy, vol. 84, no. 9, pp. 1601–1612, 2010, doi: 10.1016/j.solener.2010.06.010.

Y. S. Indartono, A. Suwono, and F. Y. Pratama, “Improving photovoltaics performance by using yellow petroleum jelly as phase change material,” Int. J. Low-Carbon Technol., vol. 11, no. 3, pp. 333–337, 2016, doi: 10.1093/ijlct/ctu033.

R. Stropnik and U. Stritih, “Increasing the efficiency of PV panel with the use of PCM,” Renew. Energy, vol. 97, pp. 671–679, 2016, doi: 10.1016/j.renene.2016.06.011.

H. Xu, N. Wang, C. Zhang, Z. Qu, and F. Karimi, “Energy conversion performance of a PV/T-PCM system under different thermal regulation strategies,” Energy Convers. Manag., vol. 229, no. December 2020, p. 113660, 2021, doi: 10.1016/j.enconman.2020.113660.

G. M. Masters, Renewable and Efficient Electric Power Systems. John Wiley & Sons Inc., 2004.

Descargas

Publicado

2024-07-03

Cómo citar

[1]
M. Farhan, A. Akhter Naqvi, y M. Uzair, «Uso de Material de Cambio de Fase para potenciar la Efectividad del Módulo Fotovoltaico», Memoria investig. ing. (Facultad Ing., Univ. Montev.), n.º 26, pp. 85–97, jul. 2024.

Número

Sección

Artículos