Una revisión sobre el aprendizaje automático cuántico y la criptografía cuántica
DOI:
https://doi.org/10.36561/ING.27.12Palabras clave:
Aprendizaje Automático Cuántico, Distribución de Claves Cuánticas (QKD), Criptografía CuánticaResumen
Este artículo corresponde a una revisión extensa (no exhaustiva) de Computación Cuántica. Se eligió considerar temas relevantes para la computación cuántica, como el aprendizaje automático, y la profundización de otros temas relacionados con la ciberseguridad. Se presenta los conceptos básicos de la computación cuántica para comprender los términos mencionados en esta revisión. Se analiza diferentes artículos sobre el estado del arte y se entrega un resumen de los aportes realizados. Finalmente, se presentan las conclusiones sobre el análisis de la bibliografía, los centros de investigación, el estado actual del arte y resultados.
Descargas
Citas
Adachi S.H., Henderson M.P. (2015): Application of Quantum Annealing to Training of Deep Neural Networks. arXiv:1510.06356 https://arxiv.org/abs/1510.06356
Arrasmith, A., Cincio, L., Somma, R. D., Coles, P. J. (2020). Operator sampling for shot-frugal optimization in variational algorithms.
Bassoli R., Boche H., Deppe C., Ferrara R., Fitzek F.H.P., Janssen G., Saeedinaeeni S.(2021): Quantum Communication Networks. Foundations in Signal Processing, Communications and Networking. Springer. https://doi.org/10.1007/978-3-030-62938-0
Bausch, J. (2020). Recurrent Quantum Neural Networks. Advances in Neural Information Processing Systems, (Eds.) H. Larochelle, M. Ranzato, R. Hadsell, M.F. Balcan, H. Lin, Vol. 33, pp.
–1379, Curran Associates, Inc., https://proceedings.neurips.cc/papers/search?q=quantum
Benioff, P. (1980, May). The computer as a physical system: A microscopic quantum mechanical Hamiltonian model of computers as represented by Turing machines. Journal of Statistical Physics, 22(5), 563-591. doi:10.1007/BF01011339
Bennett, C. H. (1973). Logical reversibility of computation. IBM Journal of Research and Development, 17(6), 525-532. doi:10.1147/rd.176.0525
Bernstein, D. J., Heninger, N., Lou, P., Valenta, L. (2017). Post-quantum rsa. Cryptology ePrint Archive, Paper 2017/351. https://eprint.iacr.org/2017/351
Brooks, M. (2019, October). Beyond quantum supremacy: the hunt for useful quantum computers. Nature, 574(7776), 19-21. doi:10.1038/d41586-019-02936-3
Buhrman H., Cleve R., Watrous J., de Wolf R.(2001). Quantum Fingerprinting. Physical Review Letters. 87 (16): 167902. doi:10.1103/PhysRevLett.87.167902
Cao, Yudong, Romero, Jonathan, Olson, Jonathan P., Degroote, Matthias, Johnson, Peter D., Kieferová, Mária, Kivlichan, Ian D., Menke, Tim, Peropadre, Borja, Sawaya, Nicolas P.D., Sim, Sukin, Veis, Libor, Aspuru-Guzik, Alán (2019): Quantum Chemistry in the Age of Quantum Computing. Chemical Reviews, Vol. 119, No. 19, pp. 10856–10915, https://doi.org/10.1021/acs.chemrev.8b00803
Caro, M. C., Huang, H.-Y., Ezzell, N., Gibbs, J., Sornborger, A. T., Cincio, L., Holmes, Z. (2022). Out-of-distribution generalization for learning quantum dynamics.
Cerezo, M., Arrasmith, A., Babbush, R., Benjamin, S. C., Endo, S., Fujii, K., Coles, P. J. (2021, aug). Variational quantum algorithms. Nature Reviews Physics, 3(9), 625–644. doi:10.1038/s42254-021-00348-9
Cong, I., Choi, S., Lukin, M. D. (2019, aug). Quantum convolutional neural networks. Nature Physics, 15(12),
–1278. doi:10.1038/s41567-019-0648-8
Díaz, A., Rodriguez, M., Piattini, M. (2024): Towards a set of metrics for hybrid (quantum/classical) systems maintainability. Journal of Universal Computer Science, vol. 30, no. 1, pp. 25-48
Feynman, R. P. (1982). Simulating physics with computers. Int. J. Theor. Phys. 21, 467–488 [16] Hubregtsen, T., Wierichs, D., Gil-Fuster, E., Derks, P.-J. H. S., Faehrmann, P. K., Meyer, J. J. (2022, oct). Training quantum embedding kernels on near-term quantum computers. Physical Review A, 106 (4). doi:10.1103/physreva.106.042431
Hubregtsen, T., Wierichs, D., Gil-Fuster, E., Derks, P.-J. H. S., Faehrmann, P. K., Meyer, J. J. (2022, oct). Training quantum embedding kernels on near-term quantum computers. Physical Review A, 106 (4). doi:10.1103/physreva.106.042431
Ilamaran S.. (2022): What is Quantum Control Theory?. AZoQuantum. Retrieved on June 29, 2024 from https://www.azoquantum.com/Article.aspx?ArticleID=335
Jafferis, D., Zlokapa, A., Lykken, J. D., Kolchmeyer, D. K., Davis, S. I., Lauk, N., Spiropulu, M. (2022, Dec 01). Traversable wormhole dynamics on a quantum processor. Nature, 612(7938), 51-55. doi:10.1038/s41586-022-05424-3
Ko, K.-K., Jung, E.-S. (2021). Development of cybersecurity technology and algorithm based on quantum computing. Applied Sciences, 11(19). doi:10.3390/app11199085
Koczor, B., Benjamin, S. C. (2022). Quantum natural gradient generalised to noisy and nonunitary circuits.
Kornjača, M., Samajdar, R., Macrì, T. et al. (2023): Trimer quantum spin liquid in a honeycomb array of Rydberg atoms. Commun Phys 6, 358 (2023). https://doi.org/10.1038/s42005-02301470-z
Kwon S., Tomonaga A., Bhai G.L., Devitt S.J., Tsai J-S (2021): Gate-based superconducting quantum computing. J. Appl. Phys. 129(4): 041102. https://doi.org/10.1063/5.0029735
Lee J.S., Farmakidis N., Wright C.D. and Bhaskaran H. (2022): Polarization-selective reconfigurability in hybridized-active-dielectric nanowires. Science Advances, 8 eabn9459. DOI:10.1126/sciadv.abn9459
Len Y.L., Gefen T., Retzker A. et al. (2022): Quantum metrology with imperfect measurements. Nat Commun 13, 6971. https://doi.org/10.1038/s41467-022-33563-8
Ma H., Govoni M. Galli G. (2020): Quantum simulations of materials on near-term quantum computers. npj Comput Mater 6, 85. https://doi.org/10.1038/s41524-020-00353-z
Nandhini S., Harpreet Singh, Akash U.N. (2022) An extensive review on quantum computers, Advances in Engineering Software. Vol. 174, 2022, 103337, https://doi.org/10.1016/j.advengsoft.2022.103337
Otterbach, J. S., Manenti, R., Alidoust, N., Bestwick, A., Block, M., Bloom, B., Rigetti, C. (2017). Unsupervised machine learning on a hybrid quantum computer.
Park, J. L. (1970). The concept of transition in quantum mechanics. Foundations of Physics, 1, 23-33.
Peruzzo, A., McClean, J., Shadbolt, P., Yung, M.-H., Zhou, X.-Q., Love, P. J., O’Brien, J. L. (2014, jul). A variational eigenvalue solver on a photonic quantum processor. Nature Communications, 5(1). doi:10.1038/ncomms5213
Pfaff, W., Hensen, B. J., Bernien, H., van Dam, S. B., Blok, M. S., Taminiau, T. H., Hanson, R. (2014, aug). Unconditional quantum teleportation between distant solid-state quantum bits.
Science, 345(6196), 532–535. doi:10.1126/ science.1253512
Pogorelov, I. and Feldker, T. and Marciniak, Ch. D. and Postler, L. and Jacob, G. and Krieglsteiner, O. and Podlesnic, V. and Meth, M. and Negnevitsky, V. and Stadler, M. and Höfer, B. and Wächter, C. and Lakhmanskiy, K. and Blatt, R. and Schindler, P. and Monz, T. (2021): Compact Ion-Trap Quantum Computing Demonstrator. PRX Quantum, vol. 2, 2, pp. 020343, https://link.aps.org/doi/10.1103/PRXQuantum.2.020343
Preskill, J. (2018, August). Quantum Computing in the NISQ era and beyond. Quantum, 2, 79. doi:10.22331/q-2018-08-06-79
Raussendorf, R. (2012). Key ideas in quantum error correction. Philo- sophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences , 370 (1975), 4541-4565. doi:10.1098/rsta.2011.0494
Schuld, M. (2021). Supervised quantum machine learning models are kernel methods.
Shor, P. W. (1995, October). Scheme for reducing decoherence in quantum computer memory, 52(4), R2493-R2496. doi:10.1103/PhysRevA.52.R2493
Skolik, A., Jerbi, S., Dunjko, V. (2022, may). Quantum agents in the gym: a variational quantum algorithm for deep q-learning. Quantum, 6, 720. doi:10.22331/q-2022-05-24-720
Tianqi Zhou, X. L., Jian Shen. (2018). Quantum cryptography for the future internet and the security analysis. Security and Communication Networks. https://doi.org/10.1155/2018/8214619
Toffoli, T. (1980). Reversible computing. In J. de Bakker J. van Leeuwen (Eds.), Automata, languages and programming (pp. 632–644). Berlin, Heidelberg: Springer Berlin Heidelberg.
Uttam Ghosh, P. C., Debashis Das. (2023). A comprenhensive tutorial on cybersecurity in quantum computing paradigm. TechRxiv. https://doi.org/10.36227/techrxiv.22277251.v1
Wecker, D., Hastings, M. B., Troyer, M. (2015, oct). Progress towards practical quantum variational algorithms. Physical Review A, 92(4). doi:10.1103/physreva.92.042303
Whitfield, J. D., Yang, J., Wang, W., Heath, J. T., Harrison, B. (2022). Quantum computing 2022.
Wurtz, J. et al. (2023): Aquila: Quera’s 256-qubit neutral-atom quantum computer. https://arxiv.org/abs/2306.11727.