Uma revisão sobre aprendizado de máquina quântica e criptografia quântica

Autores

DOI:

https://doi.org/10.36561/ING.27.12

Palavras-chave:

Aprendizado de Máquina Quântica, Distribuição Quântica de Chaves (QKD), Criptografia Quântica

Resumo

Este artigo corresponde a uma revisão extensa (não exaustiva) da Computação Quântica. Optou-se por considerar temas relevantes para a computação quântica, como aprendizado de máquina, e aprofundar outros temas relacionados à segurança cibernética. Os conceitos básicos da computação quântica são apresentados para compreender os termos mencionados nesta revisão. São analisados diferentes artigos sobre o estado da arte e fornecido um resumo das contribuições realizadas. Por fim, são apresentadas as conclusões sobre a análise da bibliografia, os centros de investigação, o estado atual da arte e os resultados.

Downloads

Não há dados estatísticos.

Referências

Adachi S.H., Henderson M.P. (2015): Application of Quantum Annealing to Training of Deep Neural Networks. arXiv:1510.06356 https://arxiv.org/abs/1510.06356

Arrasmith, A., Cincio, L., Somma, R. D., Coles, P. J. (2020). Operator sampling for shot-frugal optimization in variational algorithms.

Bassoli R., Boche H., Deppe C., Ferrara R., Fitzek F.H.P., Janssen G., Saeedinaeeni S.(2021): Quantum Communication Networks. Foundations in Signal Processing, Communications and Networking. Springer. https://doi.org/10.1007/978-3-030-62938-0

Bausch, J. (2020). Recurrent Quantum Neural Networks. Advances in Neural Information Processing Systems, (Eds.) H. Larochelle, M. Ranzato, R. Hadsell, M.F. Balcan, H. Lin, Vol. 33, pp.

–1379, Curran Associates, Inc., https://proceedings.neurips.cc/papers/search?q=quantum

Benioff, P. (1980, May). The computer as a physical system: A microscopic quantum mechanical Hamiltonian model of computers as represented by Turing machines. Journal of Statistical Physics, 22(5), 563-591. doi:10.1007/BF01011339

Bennett, C. H. (1973). Logical reversibility of computation. IBM Journal of Research and Development, 17(6), 525-532. doi:10.1147/rd.176.0525

Bernstein, D. J., Heninger, N., Lou, P., Valenta, L. (2017). Post-quantum rsa. Cryptology ePrint Archive, Paper 2017/351. https://eprint.iacr.org/2017/351

Brooks, M. (2019, October). Beyond quantum supremacy: the hunt for useful quantum computers. Nature, 574(7776), 19-21. doi:10.1038/d41586-019-02936-3

Buhrman H., Cleve R., Watrous J., de Wolf R.(2001). Quantum Fingerprinting. Physical Review Letters. 87 (16): 167902. doi:10.1103/PhysRevLett.87.167902

Cao, Yudong, Romero, Jonathan, Olson, Jonathan P., Degroote, Matthias, Johnson, Peter D., Kieferová, Mária, Kivlichan, Ian D., Menke, Tim, Peropadre, Borja, Sawaya, Nicolas P.D., Sim, Sukin, Veis, Libor, Aspuru-Guzik, Alán (2019): Quantum Chemistry in the Age of Quantum Computing. Chemical Reviews, Vol. 119, No. 19, pp. 10856–10915, https://doi.org/10.1021/acs.chemrev.8b00803

Caro, M. C., Huang, H.-Y., Ezzell, N., Gibbs, J., Sornborger, A. T., Cincio, L., Holmes, Z. (2022). Out-of-distribution generalization for learning quantum dynamics.

Cerezo, M., Arrasmith, A., Babbush, R., Benjamin, S. C., Endo, S., Fujii, K., Coles, P. J. (2021, aug). Variational quantum algorithms. Nature Reviews Physics, 3(9), 625–644. doi:10.1038/s42254-021-00348-9

Cong, I., Choi, S., Lukin, M. D. (2019, aug). Quantum convolutional neural networks. Nature Physics, 15(12),

–1278. doi:10.1038/s41567-019-0648-8

Díaz, A., Rodriguez, M., Piattini, M. (2024): Towards a set of metrics for hybrid (quantum/classical) systems maintainability. Journal of Universal Computer Science, vol. 30, no. 1, pp. 25-48

Feynman, R. P. (1982). Simulating physics with computers. Int. J. Theor. Phys. 21, 467–488 [16] Hubregtsen, T., Wierichs, D., Gil-Fuster, E., Derks, P.-J. H. S., Faehrmann, P. K., Meyer, J. J. (2022, oct). Training quantum embedding kernels on near-term quantum computers. Physical Review A, 106 (4). doi:10.1103/physreva.106.042431

Hubregtsen, T., Wierichs, D., Gil-Fuster, E., Derks, P.-J. H. S., Faehrmann, P. K., Meyer, J. J. (2022, oct). Training quantum embedding kernels on near-term quantum computers. Physical Review A, 106 (4). doi:10.1103/physreva.106.042431

Ilamaran S.. (2022): What is Quantum Control Theory?. AZoQuantum. Retrieved on June 29, 2024 from https://www.azoquantum.com/Article.aspx?ArticleID=335

Jafferis, D., Zlokapa, A., Lykken, J. D., Kolchmeyer, D. K., Davis, S. I., Lauk, N., Spiropulu, M. (2022, Dec 01). Traversable wormhole dynamics on a quantum processor. Nature, 612(7938), 51-55. doi:10.1038/s41586-022-05424-3

Ko, K.-K., Jung, E.-S. (2021). Development of cybersecurity technology and algorithm based on quantum computing. Applied Sciences, 11(19). doi:10.3390/app11199085

Koczor, B., Benjamin, S. C. (2022). Quantum natural gradient generalised to noisy and nonunitary circuits.

Kornjača, M., Samajdar, R., Macrì, T. et al. (2023): Trimer quantum spin liquid in a honeycomb array of Rydberg atoms. Commun Phys 6, 358 (2023). https://doi.org/10.1038/s42005-02301470-z

Kwon S., Tomonaga A., Bhai G.L., Devitt S.J., Tsai J-S (2021): Gate-based superconducting quantum computing. J. Appl. Phys. 129(4): 041102. https://doi.org/10.1063/5.0029735

Lee J.S., Farmakidis N., Wright C.D. and Bhaskaran H. (2022): Polarization-selective reconfigurability in hybridized-active-dielectric nanowires. Science Advances, 8 eabn9459. DOI:10.1126/sciadv.abn9459

Len Y.L., Gefen T., Retzker A. et al. (2022): Quantum metrology with imperfect measurements. Nat Commun 13, 6971. https://doi.org/10.1038/s41467-022-33563-8

Ma H., Govoni M. Galli G. (2020): Quantum simulations of materials on near-term quantum computers. npj Comput Mater 6, 85. https://doi.org/10.1038/s41524-020-00353-z

Nandhini S., Harpreet Singh, Akash U.N. (2022) An extensive review on quantum computers, Advances in Engineering Software. Vol. 174, 2022, 103337, https://doi.org/10.1016/j.advengsoft.2022.103337

Otterbach, J. S., Manenti, R., Alidoust, N., Bestwick, A., Block, M., Bloom, B., Rigetti, C. (2017). Unsupervised machine learning on a hybrid quantum computer.

Park, J. L. (1970). The concept of transition in quantum mechanics. Foundations of Physics, 1, 23-33.

Peruzzo, A., McClean, J., Shadbolt, P., Yung, M.-H., Zhou, X.-Q., Love, P. J., O’Brien, J. L. (2014, jul). A variational eigenvalue solver on a photonic quantum processor. Nature Communications, 5(1). doi:10.1038/ncomms5213

Pfaff, W., Hensen, B. J., Bernien, H., van Dam, S. B., Blok, M. S., Taminiau, T. H., Hanson, R. (2014, aug). Unconditional quantum teleportation between distant solid-state quantum bits.

Science, 345(6196), 532–535. doi:10.1126/ science.1253512

Pogorelov, I. and Feldker, T. and Marciniak, Ch. D. and Postler, L. and Jacob, G. and Krieglsteiner, O. and Podlesnic, V. and Meth, M. and Negnevitsky, V. and Stadler, M. and Höfer, B. and Wächter, C. and Lakhmanskiy, K. and Blatt, R. and Schindler, P. and Monz, T. (2021): Compact Ion-Trap Quantum Computing Demonstrator. PRX Quantum, vol. 2, 2, pp. 020343, https://link.aps.org/doi/10.1103/PRXQuantum.2.020343

Preskill, J. (2018, August). Quantum Computing in the NISQ era and beyond. Quantum, 2, 79. doi:10.22331/q-2018-08-06-79

Raussendorf, R. (2012). Key ideas in quantum error correction. Philo- sophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences , 370 (1975), 4541-4565. doi:10.1098/rsta.2011.0494

Schuld, M. (2021). Supervised quantum machine learning models are kernel methods.

Shor, P. W. (1995, October). Scheme for reducing decoherence in quantum computer memory, 52(4), R2493-R2496. doi:10.1103/PhysRevA.52.R2493

Skolik, A., Jerbi, S., Dunjko, V. (2022, may). Quantum agents in the gym: a variational quantum algorithm for deep q-learning. Quantum, 6, 720. doi:10.22331/q-2022-05-24-720

Tianqi Zhou, X. L., Jian Shen. (2018). Quantum cryptography for the future internet and the security analysis. Security and Communication Networks. https://doi.org/10.1155/2018/8214619

Toffoli, T. (1980). Reversible computing. In J. de Bakker J. van Leeuwen (Eds.), Automata, languages and programming (pp. 632–644). Berlin, Heidelberg: Springer Berlin Heidelberg.

Uttam Ghosh, P. C., Debashis Das. (2023). A comprenhensive tutorial on cybersecurity in quantum computing paradigm. TechRxiv. https://doi.org/10.36227/techrxiv.22277251.v1

Wecker, D., Hastings, M. B., Troyer, M. (2015, oct). Progress towards practical quantum variational algorithms. Physical Review A, 92(4). doi:10.1103/physreva.92.042303

Whitfield, J. D., Yang, J., Wang, W., Heath, J. T., Harrison, B. (2022). Quantum computing 2022.

Wurtz, J. et al. (2023): Aquila: Quera’s 256-qubit neutral-atom quantum computer. https://arxiv.org/abs/2306.11727.

Publicado

2024-12-13

Como Citar

[1]
M. Solar, “Uma revisão sobre aprendizado de máquina quântica e criptografia quântica”, Memoria investig. ing. (Facultad Ing., Univ. Montev.), nº 27, p. 180–199, dez. 2024.

Edição

Seção

Trabalhos apresentados no 1º Workshop Latino-Americano de Computação Quântica (TLISC 2024)

Artigos mais lidos pelo mesmo(s) autor(es)