Thermo-Mechanical Process-Induced Residual Stresses and Deformation Analysis During Manufacturing of Hull Structure

Authors

DOI:

https://doi.org/10.36561/ING.27.7

Keywords:

Hull structure, Welding deformations, Finite element analysis, Residual stresses, Transient heat transfer

Abstract

Hull structures such as stiffened plates and thin panels are the building blocks of ship structures, and therefore understanding their manufacturing process is of utmost importance. The welding process has been widely used to join stiffeners, stringers, and girders onto the plate. The thermo-mechanical loading and constraints during the welding process generally induced deformations and residual stresses. A deep understanding of the process parameters during thermo-mechanical processing is required to control the process-induced deformation. Therefore, this study aims to investigate the deformation and thermal stress generation in hull structures (panels/stiffened plates) during thermo-mechanical processes such as welding. A finite element modeling approach was proposed while incorporating the thermal and nonlinear thermo-elastic-plastic material behavior. The thin panels with different geometrical configurations and boundary conditions were simulated using steady state and transient heat-transfer-stress deformations analysis to simulate real-life scenarios. Both modeling approaches give a useful insight into understanding the complex nature of deformation and built-up residual stresses. However, the transient heat transfer-stress deformation analysis results were found in a reasonably good agreement with experimental data.

Downloads

Download data is not yet available.

References

K. Fattaneh Morshedsolouk, Mohammad, "Parametric study on average stress-average strain curve of composite stiffened plates using progressive failure method," Latin American Journal of Solids and Structures, 2014.

B. C. Cerik, S.-R. J. J. o. m. S. Cho, and Technology, "Numerical investigation on the ultimate strength of stiffened cylindrical shells considering residual stresses and shakedown," vol. 18, no. 4, pp. 524-534, 2013.

S. Li and S. J. O. E. Benson, "The influence of residual stress on the ultimate strength of longitudinally compressed stiffened panels," vol. 231, p. 108839, 2021.

D. Podder, O. P. Gupta, S. Das, and N. R. J. W. i. t. W. Mandal, "Experimental and numerical investigation of effect of welding sequence on distortion of stiffened panels," vol. 63, no. 5, pp. 1275-1289, 2019.

M. M. Khalilabad, Y. Zedan, D. Texier, M. Jahazi, and P. J. J. o. M. P. Bocher, "Effect of tool geometry and welding speed on mechanical properties of dissimilar AA2198–AA2024 FSWed joint," vol. 34, pp. 86-95, 2018.

T. Tchoumi, F. Peyraut, and R. J. J. o. M. P. T. Bolot, "Influence of the welding speed on the distortion of thin stainless steel plates—Numerical and experimental investigations in the framework of the food industry machines," vol. 229, pp. 216-229, 2016.

V. Farajkhah and Y. J. T. I. J. o. A. M. T. Liu, "Effect of clamping area and welding speed on the friction stir welding-induced residual stresses," vol. 90, no. 1, pp. 339-348, 2017.

U. Kumar, D. Gope, J. Srivastava, S. Chattopadhyaya, A. Das, and G. J. M. Krolczyk, "Experimental and numerical assessment of temperature field and analysis of microstructure and mechanical properties of low power laser annealed welded joints," vol. 11, no. 9, p. 1514, 2018.

Z. Chen, Z. Chen, and R. A. J. O. E. Shenoi, "Influence of welding sequence on welding deformation and residual stress of a stiffened plate structure," vol. 106, pp. 271-280, 2015.

Y. Zhang and Y. J. M. S. Wang, "The influence of welding mechanical boundary condition on the residual stress and distortion of a stiffened-panel," vol. 65, pp. 259-270, 2019.

Y. Kim, J. Kim, and S. J. A. S. Kang, "A study on welding deformation prediction for ship blocks using the equivalent strain method based on inherent strain," vol. 9, no. 22, p. 4906, 2019.

K. Masubuchi and N. J. W. J.-.-N. Y.-.-. Ich, "Computer analysis of degree of constraint of practical butt joints," vol. 49, no. 4, p. 166, 1970.

C. Wu and J.-W. J. T.-W. S. Kim, "Numerical prediction of deformation in thin-plate welded joints using equivalent thermal strain method," vol. 157, p. 107033, 2020.

L. Li, D. Liu, S. Ren, H.-g. Zhou, and J. J. S. Zhou, "Prediction of Welding Deformation and Residual Stress of a Thin Plate by Improved Support Vector Regression," vol. 2021, 2021.

S. J. S. Zhang and O. Structures, "A review and study on ultimate strength of steel plates and stiffened panels in axial compression," vol. 11, no. 1, pp. 81-91, 2016.

W.-y. Wang, B. Liu, and V. J. J. o. m. i. c. e. Kodur, "Effect of temperature on strength and elastic modulus of high-strength steel," vol. 25, no. 2, pp. 174-182, 2013.

M. T. Ali and R.-F. J. A. o. D. d. J. U. o. G. F. X. S. Teodor, "Control of welding deformation in thin plate," vol. 41, pp. 113-120, 2018.

K. Niklas and J. J. O. e. Kozak, "Experimental investigation of Steel–Concrete–Polymer composite barrier for the ship internal tank construction," vol. 111, pp. 449-460, 2016.

Y. Liu, N. Ma, F. Lu, and H. J. J. o. M. P. Fang, "Measurement and analysis of welding deformation in arc welded lap joints of thin steel sheets with different material properties," vol. 61, pp. 507-517, 2021.

J. D. Russell, "Application of laser welding in shipyards," in Lasers in Material Processing, 1997, vol. 3097, pp. 174-183: International Society for Optics and Photonics.

N. J. J. o. s. p. McPherson, "Thin plate distortion—the ongoing problem in shipbuilding," vol. 23, no. 02, pp. 94-117, 2007.

Z. Samad, N. Nor, and E. Fauzi, "Thermo-Mechanical Simulation of Temperature Distribution and Prediction of Heat-Affected Zone Size in MIG Welding Process on Aluminium Alloy EN AW 6082-T6," in IOP Conference Series: Materials Science and Engineering, 2019, vol. 530, no. 1, p. 012016: IOP Publishing.

D. Kollár, B. G. Kövesdi, and J. J. P. P.-C. E. Néző, "Numerical simulation of welding process–application in buckling analysis," vol. 61, no. 1, pp. 98-109, 2017.

A. Support. (2021). Moving Heat Source. Available: https://catalog.ansys.com/product/5b3bc6857a2f9a5c90d32e7e/moving-heat-source?creator=ANSYS%20Inc

A. M. Taha, "Experimental Analysis To Control Welding Deformation In Thin Plate," in International Conference on Computer Applications in Shipbuilding, 2019, vol. 2019, pp. 24-26.

T. Sirisatien, S. Mahabunphachai, and K. J. M. T. P. Sojiphan, "Effect of submerged arc welding process with one-side one-pass welding technique on distortion behavior of shipbuilding steel pl

There are no sources in the current document.ate ASTM A131 grade A," vol. 5, no. 3, pp. 9543-9551, 2018.

A. Mostafanejad, M. Iranmanesh, and A. J. O. E. Zarebidaki, "An experimental study on stress corrosion behavior of A131/A and A131/AH32 low carbon steels in simulated seawater," vol. 188, p. 106204, 2019.

H. Nishikawa, I. Oda, M. Shibahara, H. Serizawa, and H. Murakawa, "Three-dimensional thermal-elastic-plastic FEM analysis for predicting residual stress and deformation under multi-pass welding," in The Fourteenth International Offshore and Polar Engineering Conference, 2004: OnePetro.

S. S. Antman, "Nonlinear plasticity," in Nonlinear Problems of Elasticity: Springer, 1995, pp. 603-628.

A. Savas. (2021). Ansys apdl code for moving heat source. Available: https://www.researchgate.net/post/Ansys_apdl_code_for_moving_heat_source_in_welding_simulation_having_problem_for_local_coordinate_system

Lee, C., S. Woo, and J. Kim, Impact Analysis of Welding Sequence to Reduce Weld Deformation in Aluminum Hulls. Journal of Marine Science and Engineering, 2024. 12(9): p. 1604.

Cheon, Y.-J., B.-G. Kang, and D.-J. Lee. An Automatic Welding and Buckling Distortion Analysis Using 3D-CAD Models of Hull Structure. in ISOPE International Ocean and Polar Engineering Conference. 2023. ISOPE.

Published

2024-12-13

How to Cite

[1]
S. Ahmed, M. Asif, and A. Ali Zaidi, “Thermo-Mechanical Process-Induced Residual Stresses and Deformation Analysis During Manufacturing of Hull Structure”, Memoria investig. ing. (Facultad Ing., Univ. Montev.), no. 27, pp. 91–109, Dec. 2024.

Issue

Section

Articles