Tensiones residuales termo mecánicas inducidas por el proceso y análisis de deformación durante la fabricación de la estructura del casco
DOI:
https://doi.org/10.36561/ING.27.7Palabras clave:
Estructura del casco, Deformaciones de soldadura, Análisis de elementos finitos, Tensiones residuales, Transferencia de calor transitorioResumen
Las estructuras de casco, como las placas rígidas y los paneles delgados, son los componentes básicos de las estructuras de barco y, por lo tanto, comprender su proceso de fabricación es de suma importancia. El proceso de soldadura se ha utilizado ampliamente para unirse a los rígidos, largueros y vigas en la placa. La carga y restricciones termo mecánicas durante el proceso de soldadura generalmente indujeron deformaciones y tensiones residuales. Se requiere una comprensión profunda de los parámetros del proceso durante el procesamiento termo-mecánico para controlar la deformación inducida por el proceso. Por lo tanto, este estudio tiene como objetivo investigar la generación de deformación y estrés térmico en estructuras de casco (paneles/placas rígidas) durante los procesos termo-mecánicos como la soldadura. Se propuso un enfoque de modelado de elementos finitos al incorporar el comportamiento de material térmico y no lineal de plástico termoelástico. Los paneles delgados con diferentes configuraciones geométricas y condiciones de contorno se simularon utilizando un análisis de deformaciones de estrés por calor de calor transitorio y transitorio para simular escenarios de la vida real. Ambos enfoques de modelado brindan una visión útil de comprender la naturaleza compleja de la deformación y las tensiones residuales acumuladas. Sin embargo, los resultados del análisis de deformación de transferencia de calor transitorio de calor se encontraron en un acuerdo razonablemente bueno con los datos experimentales.
Descargas
Citas
K. Fattaneh Morshedsolouk, Mohammad, "Parametric study on average stress-average strain curve of composite stiffened plates using progressive failure method," Latin American Journal of Solids and Structures, 2014.
B. C. Cerik, S.-R. J. J. o. m. S. Cho, and Technology, "Numerical investigation on the ultimate strength of stiffened cylindrical shells considering residual stresses and shakedown," vol. 18, no. 4, pp. 524-534, 2013.
S. Li and S. J. O. E. Benson, "The influence of residual stress on the ultimate strength of longitudinally compressed stiffened panels," vol. 231, p. 108839, 2021.
D. Podder, O. P. Gupta, S. Das, and N. R. J. W. i. t. W. Mandal, "Experimental and numerical investigation of effect of welding sequence on distortion of stiffened panels," vol. 63, no. 5, pp. 1275-1289, 2019.
M. M. Khalilabad, Y. Zedan, D. Texier, M. Jahazi, and P. J. J. o. M. P. Bocher, "Effect of tool geometry and welding speed on mechanical properties of dissimilar AA2198–AA2024 FSWed joint," vol. 34, pp. 86-95, 2018.
T. Tchoumi, F. Peyraut, and R. J. J. o. M. P. T. Bolot, "Influence of the welding speed on the distortion of thin stainless steel plates—Numerical and experimental investigations in the framework of the food industry machines," vol. 229, pp. 216-229, 2016.
V. Farajkhah and Y. J. T. I. J. o. A. M. T. Liu, "Effect of clamping area and welding speed on the friction stir welding-induced residual stresses," vol. 90, no. 1, pp. 339-348, 2017.
U. Kumar, D. Gope, J. Srivastava, S. Chattopadhyaya, A. Das, and G. J. M. Krolczyk, "Experimental and numerical assessment of temperature field and analysis of microstructure and mechanical properties of low power laser annealed welded joints," vol. 11, no. 9, p. 1514, 2018.
Z. Chen, Z. Chen, and R. A. J. O. E. Shenoi, "Influence of welding sequence on welding deformation and residual stress of a stiffened plate structure," vol. 106, pp. 271-280, 2015.
Y. Zhang and Y. J. M. S. Wang, "The influence of welding mechanical boundary condition on the residual stress and distortion of a stiffened-panel," vol. 65, pp. 259-270, 2019.
Y. Kim, J. Kim, and S. J. A. S. Kang, "A study on welding deformation prediction for ship blocks using the equivalent strain method based on inherent strain," vol. 9, no. 22, p. 4906, 2019.
K. Masubuchi and N. J. W. J.-.-N. Y.-.-. Ich, "Computer analysis of degree of constraint of practical butt joints," vol. 49, no. 4, p. 166, 1970.
C. Wu and J.-W. J. T.-W. S. Kim, "Numerical prediction of deformation in thin-plate welded joints using equivalent thermal strain method," vol. 157, p. 107033, 2020.
L. Li, D. Liu, S. Ren, H.-g. Zhou, and J. J. S. Zhou, "Prediction of Welding Deformation and Residual Stress of a Thin Plate by Improved Support Vector Regression," vol. 2021, 2021.
S. J. S. Zhang and O. Structures, "A review and study on ultimate strength of steel plates and stiffened panels in axial compression," vol. 11, no. 1, pp. 81-91, 2016.
W.-y. Wang, B. Liu, and V. J. J. o. m. i. c. e. Kodur, "Effect of temperature on strength and elastic modulus of high-strength steel," vol. 25, no. 2, pp. 174-182, 2013.
M. T. Ali and R.-F. J. A. o. D. d. J. U. o. G. F. X. S. Teodor, "Control of welding deformation in thin plate," vol. 41, pp. 113-120, 2018.
K. Niklas and J. J. O. e. Kozak, "Experimental investigation of Steel–Concrete–Polymer composite barrier for the ship internal tank construction," vol. 111, pp. 449-460, 2016.
Y. Liu, N. Ma, F. Lu, and H. J. J. o. M. P. Fang, "Measurement and analysis of welding deformation in arc welded lap joints of thin steel sheets with different material properties," vol. 61, pp. 507-517, 2021.
J. D. Russell, "Application of laser welding in shipyards," in Lasers in Material Processing, 1997, vol. 3097, pp. 174-183: International Society for Optics and Photonics.
N. J. J. o. s. p. McPherson, "Thin plate distortion—the ongoing problem in shipbuilding," vol. 23, no. 02, pp. 94-117, 2007.
Z. Samad, N. Nor, and E. Fauzi, "Thermo-Mechanical Simulation of Temperature Distribution and Prediction of Heat-Affected Zone Size in MIG Welding Process on Aluminium Alloy EN AW 6082-T6," in IOP Conference Series: Materials Science and Engineering, 2019, vol. 530, no. 1, p. 012016: IOP Publishing.
D. Kollár, B. G. Kövesdi, and J. J. P. P.-C. E. Néző, "Numerical simulation of welding process–application in buckling analysis," vol. 61, no. 1, pp. 98-109, 2017.
A. Support. (2021). Moving Heat Source. Available: https://catalog.ansys.com/product/5b3bc6857a2f9a5c90d32e7e/moving-heat-source?creator=ANSYS%20Inc
A. M. Taha, "Experimental Analysis To Control Welding Deformation In Thin Plate," in International Conference on Computer Applications in Shipbuilding, 2019, vol. 2019, pp. 24-26.
T. Sirisatien, S. Mahabunphachai, and K. J. M. T. P. Sojiphan, "Effect of submerged arc welding process with one-side one-pass welding technique on distortion behavior of shipbuilding steel pl
There are no sources in the current document.ate ASTM A131 grade A," vol. 5, no. 3, pp. 9543-9551, 2018.
A. Mostafanejad, M. Iranmanesh, and A. J. O. E. Zarebidaki, "An experimental study on stress corrosion behavior of A131/A and A131/AH32 low carbon steels in simulated seawater," vol. 188, p. 106204, 2019.
H. Nishikawa, I. Oda, M. Shibahara, H. Serizawa, and H. Murakawa, "Three-dimensional thermal-elastic-plastic FEM analysis for predicting residual stress and deformation under multi-pass welding," in The Fourteenth International Offshore and Polar Engineering Conference, 2004: OnePetro.
S. S. Antman, "Nonlinear plasticity," in Nonlinear Problems of Elasticity: Springer, 1995, pp. 603-628.
A. Savas. (2021). Ansys apdl code for moving heat source. Available: https://www.researchgate.net/post/Ansys_apdl_code_for_moving_heat_source_in_welding_simulation_having_problem_for_local_coordinate_system
Lee, C., S. Woo, and J. Kim, Impact Analysis of Welding Sequence to Reduce Weld Deformation in Aluminum Hulls. Journal of Marine Science and Engineering, 2024. 12(9): p. 1604.
Cheon, Y.-J., B.-G. Kang, and D.-J. Lee. An Automatic Welding and Buckling Distortion Analysis Using 3D-CAD Models of Hull Structure. in ISOPE International Ocean and Polar Engineering Conference. 2023. ISOPE.