Machine Learning en la detección y predicción de enfermedades del ganado
una visión general
DOI:
https://doi.org/10.36561/ING.27.4Palabras clave:
Machine learningResumen
La detección temprana y la predicción de enfermedades en el ganado son esenciales para garantizar la salud y el bienestar de los animales, mejorar la productividad y reducir las pérdidas económicas. En este contexto, el Machine Learning (ML), un avance prominente dentro de la inteligencia artificial emerge como una herramienta revolucionaria para transformar el proceso de identificación y manejo de enfermedades en los animales. Esta tecnología permite desarrollar algoritmos complejos capaces de analizar grandes volúmenes de datos clínicos y ambientales, identificando patrones de alerta temprana en síntomas y comportamientos asociados a enfermedades. A través de modelos predictivos, el ML evalúa factores de riesgo y estima la probabilidad de aparición de enfermedades, lo que mejora significativamente la precisión diagnóstica y la efectividad de los tratamientos. Este artículo revisa de manera exhaustiva el uso de ML en la producción ganadera, abordando aplicaciones, modelos y técnicas de vanguardia para la detección y manejo sanitario del ganado, y plantea oportunidades para una gestión ganadera más eficiente y ética, considerando además los desafíos éticos y de privacidad inherentes a la implementación de estas tecnologías
Descargas
Citas
J. Chen et al., "Retrospect and Risk Analysis of Foot-and-Mouth Disease in China Based on Integrated Surveillance and Spatial Analysis Tools," Frontiers in Veterinary Science, vol. 6, 2020. [Online]. Available: https://www.frontiersin.org/articles/10.3389/fvets.2019.00511. [Accessed April 24, 2023].
K. Džermeikaitė, D. Bačėninaitė, and R. Antanaitis, "Innovations in Cattle Farming: Application of Innovative Technologies and Sensors in the Diagnosis of Diseases," Animals, vol. 13, no. 5, Art. no. 5, Jan. 2023, doi: 10.3390/ani13050780.
S. Neethirajan, "The role of sensors, big data and machine learning in modern animal farming," Sensors and Actuators B: Chemical, vol. 29, p. 100367, Aug. 2020, doi: 10.1016/j.sbsr.2020.100367.
X. Kang, S. Li, Q. Li, and G. Liu, "Dimension-reduced spatiotemporal network for lameness detection in dairy cows," Computers and Electronics in Agriculture, vol. 197, p. 106922, Jun. 2022, doi: 10.1016/j.compag.2022.106922.
M. Marimuthu, M. Abinaya, K. S. Hariesh, K. Madhankumar, and V. Pavithra, "A Review on Heart Disease Prediction using Machine Learning and Data Analytics Approach," International Journal of Computer Applications, vol. 181, no. 18, pp. 20–25, Sep. 2018.
S. D. Mackowiak et al., "Extensive identification and analysis of conserved small ORFs in animals," Genome Biology, vol. 16, p. 179, Sep. 2015, doi: 10.1186/s13059-015-0742-x.
L. Kong et al., "CPC: assess the protein-coding potential of transcripts using sequence features and support vector machine," Nucleic Acids Research, vol. 35, no. Web Server issue, pp. W345-W349, Jul. 2007, doi: 10.1093/nar/gkm391.
A. Richardson, B. M. Signor, B. A. Lidbury, and T. Badrick, "Clinical chemistry in higher dimensions: Machine-learning and enhanced prediction from routine clinical chemistry data," Clinical Biochemistry, vol. 49, no. 16, pp. 1213–1220, Nov. 2016, doi: 10.1016/j.clinbiochem.2016.07.013.
J. Wildenhain et al., "Prediction of Synergism from Chemical-Genetic Interactions by Machine Learning," Cell Systems, vol. 1, no. 6, pp. 383–395, Dec. 2015, doi: 10.1016/j.cels.2015.12.003.
J. Kang, R. Schwartz, J. Flickinger, and S. Beriwal, "Machine Learning Approaches for Predicting Radiation Therapy Outcomes: A Clinician’s Perspective," International Journal of Radiation Oncology, Biology, Physics, vol. 93, no. 5, pp. 1127–1135, Dec. 2015, doi: 10.1016/j.ijrobp.2015.07.2286.
H. Asadi, R. Dowling, B. Yan, and P. Mitchell, "Machine Learning for Outcome Prediction of Acute Ischemic Stroke Post Intra-Arterial Therapy," PLOS ONE, vol. 9, no. 2, p. e88225, Feb. 2014, doi: 10.1371/journal.pone.0088225.
A. Aybar-Ruiz et al., "A novel Grouping Genetic Algorithm–Extreme Learning Machine approach for global solar radiation prediction from numerical weather models inputs," Solar Energy, vol. 132, pp. 129–142, Jul. 2016, doi: 10.1016/j.solener.2016.03.015.
J. Rhee and J. Im, "Meteorological drought forecasting for ungauged areas based on machine learning: Using long-range climate forecast and remote sensing data," Agricultural and Forest Meteorology, vol. 237–238, pp. 105–122, May 2017, doi: 10.1016/j.agrformet.2017.02.011.
S. Cramer, M. Kampouridis, A. A. Freitas, and A. K. Alexandridis, "An extensive evaluation of seven machine learning methods for rainfall prediction in weather derivatives," Expert Systems with Applications, vol. 85, pp. 169–181, Nov. 2017, doi: 10.1016/j.eswa.2017.05.029.
K. Takahashi, K. Kim, T. Ogata, and S. Sugano, "Tool-body assimilation model considering grasping motion through deep learning," Robotics and Autonomous Systems, vol. 91, pp. 115–127, May 2017, doi: 10.1016/j.robot.2017.01.002.
C. Zhou et al., "Near infrared computer vision and neuro-fuzzy model-based feeding decision system for fish in aquaculture," Computers and Electronics in Agriculture, vol. 146, pp. 114–124, Mar. 2018, doi: 10.1016/j.compag.2018.02.006.
X. A. López-Cortés et al., "Fast detection of pathogens in salmon farming industry," Aquaculture, vol. 470, pp. 17–24, Mar. 2017, doi: 10.1016/j.aquaculture.2016.12.008.
A. L. Samuel, "Some Studies in Machine Learning Using the Game of Checkers," IBM Journal of Research and Development, vol. 3, no. 3, pp. 210–229, Jul. 1959, doi: 10.1147/rd.33.0210.
T. M. Mitchell, Machine Learning, New York: McGraw-Hill, 1997, in McGraw-Hill Series in Computer Science.
K. Liakos, P. Busato, D. Moshou, S. Pearson, and D. Bochtis, "Machine Learning in Agriculture: A Review," Sensors, vol. 18, no. 8, p. 2674, Aug. 2018, doi: 10.3390/s18082674.
"What is Machine Learning?" IBM. [Online]. Available: https://www.ibm.com/topics/machine-learning. [Accessed March 5, 2024].
D. Sharma and N. Kumar, "A Review on Machine Learning Algorithms, Tasks and Applications," 2017, vol. 6, pp. 2278–1323, Oct. 2017.
M. T. J. P., "Models for machine learning," IBM Developer, Dec. 5, 2017. [Online]. Available: https://developer.ibm.com/articles/cc-models-machine-learning/#reinforcement-learning. [Accessed December 20, 2023].
S. N. Peter Russell, Artificial Intelligence: A Modern Approach, Englewood Cliffs, N.J, 1995.
W. A. Belson, "Matching and Prediction on the Principle of Biological Classification," Journal of the Royal Statistical Society. Series C (Applied Statistics), vol. 8, no. 2, pp. 65–75, 1959, doi: 10.2307/2985543.
L. Breiman, Classification and Regression Trees, Routledge, 2017.
J. R. Quinlan, C4.5: Programs for Machine Learning, Morgan Kaufmann, 1993.
"What is Unsupervised Learning?" IBM. [Online]. Available: https://www.ibm.com/topics/unsupervised-learning. [Accessed November 29, 2023].
C. Cortes and V. Vapnik, "Support-vector networks," Machine Learning, vol. 20, no. 3, pp. 273–297, Sep. 1995, doi: 10.1007/BF00994018.
C.-C. Chang and C.-J. Lin, "LIBSVM: A library for support vector machines," ACM Transactions on Intelligent Systems and Technology, vol. 2, no. 3, p. 27:1-27:27, May 2011, doi: 10.1145/1961189.1961199.
J. A. K. Suykens and J. Vandewalle, "Least Squares Support Vector Machine Classifiers," Neural Processing Letters, vol. 9, no. 3, pp. 293–300, Jun. 1999, doi: 10.1023/A:1018628609742.
A. Smola et al., "Regression Estimation with Support Vector Learning Machines," 1996.
R. K. H. Galvão et al., "A variable elimination method to improve the parsimony of MLR models using the successive projections algorithm," Chemometrics and Intelligent Laboratory Systems, vol. 92, no. 1, pp. 83–91, May 2008, doi: 10.1016/j.chemolab.2007.12.004.
B. Liu, M. Ma, and J. Chang, Eds., Information Computing and Applications, Lecture Notes in Computer Science, vol. 7473, Berlin, Heidelberg: Springer Berlin Heidelberg, 2012, doi: 10.1007/978-3-642-34062-8.
R. García, J. Aguilar, M. Toro, A. Pinto, and P. Rodríguez, "A systematic literature review on the use of machine learning in precision livestock farming," Computers and Electronics in Agriculture, vol. 179, p. 105826, Dec. 2020, doi: 10.1016/j.compag.2020.105826.
L. Benos, A. C. Tagarakis, G. Dolias, R. Berruto, D. Kateris, and D. Bochtis, "Machine Learning in Agriculture: A Comprehensive Updated Review," Sensors, vol. 21, no. 11, p. 3758, May 2021, doi: 10.3390/s21113758.
A. I. Awad, "From classical methods to animal biometrics: A review on cattle identification and tracking," Computers and Electronics in Agriculture, vol. 123, pp. 423–435, Apr. 2016, doi: 10.1016/j.compag.2016.03.014.
D. Berckmans and M. Guarino, "From the Editors: Precision livestock farming for the global livestock sector," Animal Frontiers, vol. 7, no. 1, pp. 4–5, Jan. 2017,
Z. Feiyang, H. Yueming, C. Liancheng, G. Lihong, D. Wenjie, and W. Lu, "Monitoring behavior of poultry based on RFID radio frequency network," International Journal of Agricultural and Biological Engineering, vol. 9, no. 6, Dec. 2016, doi: 10.25165/ijabe.v9i6.1568.
H. Hogeveen, W. Steeneveld, and C. A. Wolf, "Production Diseases Reduce the Efficiency of Dairy Production: A Review of the Results, Methods, and Approaches Regarding the Economics of Mastitis," Annual Review of Resource Economics, vol. 11, pp. 289–312, 2019, doi: 10.1146/annurev-resource-100518-093954.
S. De Vliegher, L. K. Fox, S. Piepers, S. McDougall, and H. W. Barkema, "Invited review: Mastitis in dairy heifers: Nature of the disease, potential impact, prevention, and control," Journal of Dairy Science, vol. 95, no. 3, pp. 1025–1040, Mar. 2012, doi: 10.3168/jds.2010-4074.
Y. Wang, Q. Li, M. Chu, X. Kang, and G. Liu, "Application of infrared thermography and machine learning techniques in cattle health assessments: A review," Biosystems Engineering, vol. 230, pp. 361–387, Jun. 2023, doi: 10.1016/j.biosystemseng.2023.05.002.
C. J. Sanford et al., "Test characteristics from latent-class models of the California Mastitis Test," Preventive Veterinary Medicine, vol. 77, no. 1, pp. 96–108, Nov. 2006, doi: 10.1016/j.prevetmed.2006.06.006.
P. L. Ruegg, "A 100-Year Review: Mastitis detection, management, and prevention," Journal of Dairy Science, vol. 100, no. 12, pp. 10381–10397, Dec. 2017, doi: 10.3168/jds.2017-13023.
D. Cavero, K.-H. Tölle, C. Henze, C. Buxadé, and J. Krieter, "Mastitis detection in dairy cows by application of neural networks," Livestock Science, vol. 114, no. 2, pp. 280–286, Apr. 2008, doi: 10.1016/j.livsci.2007.05.012.
C. Kamphuis, H. Mollenhorst, J. A. P. Heesterbeek, and H. Hogeveen, "Detection of clinical mastitis with sensor data from automatic milking systems is improved by using decision-tree induction," Journal of Dairy Science, vol. 93, no. 8, pp. 3616–3627, Aug. 2010, doi: 10.3168/jds.2010-3228.
S. A. Naqvi, M. T. M. King, R. D. Matson, T. J. DeVries, R. Deardon, and H. W. Barkema, "Mastitis detection with recurrent neural networks in farms using automated milking systems," Computers and Electronics in Agriculture, vol. 192, p. 106618, Jan. 2022, doi: 10.1016/j.compag.2021.106618.
H. Motohashi, H. Ohwada, and C. Kubota, "Early Detection Method for Subclinical Mastitis in Auto Milking Systems Using Machine Learning," in 2020 IEEE 19th International Conference on Cognitive Informatics & Cognitive Computing (ICCICC), Sep. 2020, pp. 76–83, doi: 10.1109/ICCICC50026.2020.9450258.
S. Ankinakatte, E. Norberg, P. Løvendahl, D. Edwards, and S. Højsgaard, "Predicting mastitis in dairy cows using neural networks and generalized additive models: A comparison," Computers and Electronics in Agriculture, vol. 99, pp. 1–6, Nov. 2013, doi: 10.1016/j.compag.2013.08.024.
Y. Wang, X. Kang, Z. He, Y. Feng, and G. Liu, "Accurate detection of dairy cow mastitis with deep learning technology: a new and comprehensive detection method based on infrared thermal images," animal, vol. 16, no. 10, p. 100646, Oct. 2022, doi: 10.1016/j.animal.2022.100646.
L. Fadul-Pacheco, H. Delgado, and V. E. Cabrera, "Exploring machine learning algorithms for early prediction of clinical mastitis," *International Dairy Journal*, vol. 119, p. 105051, Aug. 2021, doi: 10.1016/j.idairyj.2021.105051.
M. Khatun et al., "Development of a new clinical mastitis detection method for automatic milking systems," Journal of Dairy Science, vol. 101, no. 10, pp. 9385–9395, Oct. 2018, doi: 10.3168/jds.2017-14310.
C. Foditsch et al., "Lameness Prevalence and Risk Factors in Large Dairy Farms in Upstate New York. Model Development for the Prediction of Claw Horn Disruption Lesions," PLOS ONE, vol. 11, no. 1, p. e0146718, Jan. 2016, doi: 10.1371/journal.pone.0146718.
F. C. Flower and D. M. Weary, "Gait assessment in dairy cattle," Animal, vol. 3, no. 1, pp. 87–95, Jan. 2009, doi: 10.1017/S1751731108003194.
L. Ózsvári, "Economic Cost of Lameness in Dairy Cattle Herds," Journal of Dairy, Veterinary & Animal Research, vol. 6, p. 00176, Dec. 2017, doi: 10.15406/jdvar.2017.06.00176.
E. Cha, J. A. Hertl, D. Bar, and Y. T. Gröhn, "The cost of different types of lameness in dairy cows calculated by dynamic programming," Preventive Veterinary Medicine, vol. 97, no. 1, pp. 1–8, Oct. 2010, doi: 10.1016/j.prevetmed.2010.07.011.
N. Volkmann, B. Kulig, S. Hoppe, J. Stracke, O. Hensel, and N. Kemper, "On-farm detection of claw lesions in dairy cows based on acoustic analyses and machine learning," Journal of Dairy Science, vol. 104, no. 5, pp. 5921–5931, May 2021, doi: 10.3168/jds.2020-19206.
S. Shahinfar, M. Khansefid, M. Haile-Mariam, and J. E. Pryce, "Machine learning approaches for the prediction of lameness in dairy cows," Animal, vol. 15, no. 11, p. 100391, Nov. 2021, doi: 10.1016/j.animal.2021.100391.
D. Warner, E. Vasseur, D. M. Lefebvre, and R. Lacroix, "A machine learning based decision aid for lameness in dairy herds using farm-based records," Computers and Electronics in Agriculture, vol. 169, p. 105193, Feb. 2020, doi: 10.1016/j.compag.2019.105193.
F. Mavrot, H. Hertzberg, and P. Torgerson, "Effect of gastro-intestinal nematode infection on sheep performance: A systematic review and meta-analysis," Parasites & Vectors, vol. 8, no. 1, p. 557, Dec. 2015, doi: 10.1186/s13071-015-1164-z.
A. C. de S. Chagas, O. Tupy, I. B. dos Santos, and S. N. Esteves, "Economic impact of gastrointestinal nematodes in Morada Nova sheep in Brazil," Revista Brasileira de Parasitologia Veterinária, vol. 31, p. e008722, Aug. 2022, doi: https://doi.org/10.1590/S1984-29612022044.
Montout, A. X., Bamber, R. S., Lange, D. S., Ndlovu, D. Z., Morgan, E. R., Ioannou, C. C.,
Dowsey, A. W., "Accurate and interpretable prediction of poor health in small ruminants with accelerometers and machine learning," bioRxiv, Aug 2020, doi: https://doi.org/10.1101/2020.08.03.234203.
Contla Hernández, B., Lopez-Villalobos, N., & Vignes, M. (2021). "Identifying health status in grazing dairy cows from milk mid-infrared spectroscopy by using machine learning methods." Animals, 11(8), 2154.
Neethirajan, S. (2023). "The significance and ethics of digital livestock farming." AgriEngineering, 5(1), 488-505.
Zhang, Y., Wu, M., Tian, G. Y., Zhang, G., & Lu, J. (2021). "Ethics and privacy of artificial intelligence: Understandings from bibliometrics." Knowledge-Based Systems, 222, 106994.
Secinaro, S., Calandra, D., Secinaro, A., Muthurangu, V., & Biancone, P. (2021). "The role of artificial intelligence in healthcare: a structured literature review." BMC Medical Informatics and Decision Making, 21, 1-23.
Kumar, Y., Koul, A., Singla, R., & Ijaz, M. F. (2023). "Artificial intelligence in disease diagnosis: a systematic literature review, synthesizing framework and future research agenda." Journal of Ambient Intelligence and Humanized Computing, 14(7), 8459-8486.
Taneja, M., Byabazaire, J., Jalodia, N., Davy, A., Olariu, C., & Malone, P. (2020). "Machine learning based fog computing assisted data-driven approach for early lameness detection in dairy cattle." Computers and Electronics in Agriculture, 171, 105286. doi: https://doi.org/10.1016/j.compag.2020.105286.
Wagner, N., Antoine, V., Mialon, M.-M., Lardy, R., Silberberg, M., et al. (2020). "Machine learning to detect behavioural anomalies in dairy cows under subacute ruminal acidosis." Computers and Electronics in Agriculture, 170, 105233. doi: 10.1016/j.compag.2020.105233.
Lake, B., Getahun, F., & Teshome, F. T. (2022). "Application of artificial intelligence algorithm in image processing for cattle disease diagnosis." Journal of Intelligent Learning Systems and Applications, 14(4), 71-88.