Aplicações recentes de tecnologias digitais na agricultura

Autores

DOI:

https://doi.org/10.36561/ING.29.11

Palavras-chave:

IoT, Agricultura de precisão, Agrotecnologia, Aprendizado de máquina, Inteligência artificial

Resumo

O setor agrícola enfrenta múltiplos desafios, além de seu papel fundamental no desenvolvimento econômico e na redução da pobreza. Entre esses desafios, destaca-se a necessidade de atender à crescente demanda global por alimentos ao mesmo tempo que enfrenta adversidades como mudanças climáticas, pragas, inundações, incêndios florestais, conflitos políticos e guerras, entre outros fatores. Neste contexto, torna-se imprescindível o desenvolvimento e a implementação de tecnologias adaptadas às condições específicas de cada região para otimizar os diversos processos agrícolas. Nesse sentido, a incorporação de tecnologias digitais na agricultura deu origem ao conceito de Agricultura 4.0, que nos últimos anos facilitou a transição dos processos agrícolas para o ambiente digital. Esta breve revisão tem como objetivo analisar e destacar as principais características das tecnologias digitais aplicadas à agricultura, bem como algumas das suas aplicações reportadas no período entre 2018 e 2024. Adicionalmente, abordam-se os desafios futuros para a melhoria contínua dos processos agrícolas através do uso de tecnologias digitais.

Downloads

Não há dados estatísticos.

Referências

J. Paneque-Gálvez, M. K. McCall, B. M. Napoletano, S. A. Wich, y L. P. Koh, “Small drones for community-based forest monitoring: An assessment of their feasibility and potential in tropical areas”, Forests, vol. 5, núm. 6, pp. 1481–1507, 2014, doi: 10.3390/F5061481.

Aema, “TECNICAS HIDROPONICAS - AEMA Hispanica”. Consultado: el 12 de julio de 2022. [En línea]. Disponible en: https://aemahispanica.com/actualidad/tecnicas-hidroponicas/

C. Saavedra-Gualtero, A. Cárdenas-Forero, y F. Freyle-Corro, “Implementación de un sistema de acuaponía sustentable modular. DImplementation of a modular sustainable aquaponics system”.

T. Van Gerrewey, N. Boon, y D. Geelen, “Vertical Farming: The Only Way Is Up?”, Agronomy, vol. 12, núm. 1, p. 2, dic. 2021, doi: 10.3390/agronomy12010002.

Olabimpe Banke Akintuyi, “Vertical farming in urban environments: A review of architectural integration and food security”, Open Access Research Journal of Biology and Pharmacy, vol. 10, núm. 2, pp. 114–126, abr. 2024, doi: 10.53022/oarjbp.2024.10.2.0017.

M. H. M. Saad, N. M. Hamdan, y M. R. Sarker, “State of the Art of Urban Smart Vertical Farming Automation System: Advanced Topologies, Issues and Recommendations”, Electronics (Basel), vol. 10, núm. 12, p. 1422, jun. 2021, doi: 10.3390/electronics10121422.

S. Oh y C. Lu, “Vertical farming - smart urban agriculture for enhancing resilience and sustainability in food security”, J Hortic Sci Biotechnol, vol. 98, núm. 2, pp. 133–140, mar. 2023, doi: 10.1080/14620316.2022.2141666.

N. Elbeheiry y R. S. Balog, “Technologies Driving the Shift to Smart Farming: A Review”, IEEE Sens J, vol. 23, núm. 3, pp. 1752–1769, feb. 2023, doi: 10.1109/JSEN.2022.3225183.

G. Mohyuddin, M. A. Khan, A. Haseeb, S. Mahpara, M. Waseem, y A. M. Saleh, “Evaluation of Machine Learning approaches for precision Farming in Smart Agriculture System - A comprehensive Review”, IEEE Access, 2024, doi: 10.1109/ACCESS.2024.3390581.

R. Abbasi, P. Martinez, y R. Ahmad, “The digitization of agricultural industry – a systematic literature review on agriculture 4.0”, 2022. doi: 10.1016/j.atech.2022.100042.

C. Yang, X. Ji, C. Cheng, S. Liao, B. Obuobi, y Y. Zhang, “Digital economy empowers sustainable agriculture: Implications for farmers’ adoption of ecological agricultural technologies”, Ecol Indic, vol. 159, p. 111723, feb. 2024, doi: 10.1016/J.ECOLIND.2024.111723.

B. Petrović, R. Bumbálek, T. Zoubek, R. Kuneš, L. Smutný, y P. Bartoš, “Application of precision agriculture technologies in Central Europe-review”, J Agric Food Res, vol. 15, p. 101048, mar. 2024, doi: 10.1016/J.JAFR.2024.101048.

R. Zulfikhar, A. Z. A. Alaydrus, S. Sutiharni, A. Nanjar, y H. Hartati, “Utilization of Smart Agricultural Technology to Improve Resource Efficiency in Agro-industry”, West Science Agro, vol. 2, núm. 01, pp. 28–34, feb. 2024, doi: 10.58812/WSA.V2I01.656.

P. Chetri, U. Sharma, y P. Vigneswara Ilavarasan, “Weather information, farm-level climate adaptation and farmers’ adaptive capacity: Examining the role of information and communication technologies”, Environ Sci Policy, vol. 151, p. 103630, ene. 2024, doi: 10.1016/J.ENVSCI.2023.103630.

I. A. Lakhiar et al., “A Review of Precision Irrigation Water-Saving Technology under Changing Climate for Enhancing Water Use Efficiency, Crop Yield, and Environmental Footprints”, Agriculture 2024, Vol. 14, Page 1141, vol. 14, núm. 7, p. 1141, jul. 2024, doi: 10.3390/AGRICULTURE14071141.

K. G. Liakos, P. Busato, D. Moshou, S. Pearson, y D. Bochtis, “Machine learning in agriculture: A review”, Sensors (Switzerland), vol. 18, núm. 8, ago. 2018, doi: 10.3390/S18082674.

A. Cravero, S. Pardo, S. Sepúlveda, y L. Muñoz, “Challenges to Use Machine Learning in Agricultural Big Data: A Systematic Literature Review”, Agronomy, vol. 12, núm. 3, p. 748, mar. 2022, doi: 10.3390/agronomy12030748.

M. Yang, D. Xu, S. Chen, H. Li, y Z. Shi, “Evaluation of machine learning approaches to predict soil organic matter and pH using vis-NIR spectra”, Sensors (Switzerland), vol. 19, núm. 2, ene. 2019, doi: 10.3390/S19020263.

G. Yashodha y D. Shalini, “An integrated approach for predicting and broadcasting tea leaf disease at early stage using IoT with machine learning – A review”, Mater Today Proc, vol. 37, núm. Part 2, pp. 484–488, ene. 2021, doi: 10.1016/J.MATPR.2020.05.458.

F. Muthoni, C. Thierfelder, B. Mudereri, J. Manda, M. Bekunda, y I. Hoeschle-Zeledon, “Machine learning model accurately predict maize grain yields in conservation agriculture systems in Southern Africa”, 2021 9th International Conference on Agro-Geoinformatics, Agro-Geoinformatics 2021, jul. 2021, doi: 10.1109/AGRO-GEOINFORMATICS50104.2021.9530335.

M. I. Khoshrou, P. Zarafshan, M. Dehghani, G. Chegini, A. Arabhosseini, y B. Zakeri, “Deep Learning Prediction of Chlorophyll Content in Tomato Leaves”, 9th RSI International Conference on Robotics and Mechatronics, ICRoM 2021, pp. 580–585, 2021, doi: 10.1109/ICROM54204.2021.9663468.

D. M. Herrera Posada y E. Aristizábal, “Modelo de inteligencia artificial y aprendizaje automático para la predicción espacial y temporal de eventos de sequía en el departamento del Magdalena, Colombia.”, Inge CuC, vol. 18, núm. 2, pp. 249–265, nov. 2022, doi: 10.17981/ingecuc.18.2.2022.20.

F. Kong, “MODELING SENTINEL-1 OBSERVABLES FOR SUGARBEET FIELDS USING MACHINE LEARNING A STUDY ABOUT SAR ASSIMILATION TECHNIQUE”.

S. Ghatrehsamani et al., “Artificial Intelligence Tools and Techniques to Combat Herbicide Resistant Weeds—A Review”, Sustainability 2023, Vol. 15, Page 1843, vol. 15, núm. 3, p. 1843, ene. 2023, doi: 10.3390/SU15031843.

Y. Wei, C. Han, y Z. Yu, “An environment safety monitoring system for agricultural production based on artificial intelligence, cloud computing and big data networks”, Journal of Cloud Computing, vol. 12, núm. 1, pp. 1–17, dic. 2023, doi: 10.1186/s13677-023-00463-1.

M. Vieto-Vega, “Machine Learning en la detección y predicción de enfermedades del ganado”, Memoria Investigaciones en Ingeniería, núm. 27, pp. 46–59, dic. 2024, doi: 10.36561/ING.27.4.

E.-S. M. El-Kenawy, A. A. Alhussan, N. Khodadadi, S. Mirjalili, y M. M. Eid, “Predicting Potato Crop Yield with Machine Learning and Deep Learning for Sustainable Agriculture”, Potato Res, jul. 2024, doi: 10.1007/s11540-024-09753-w.

J. Wang, Y. Wang, G. Li, y Z. Qi, “Integration of Remote Sensing and Machine Learning for Precision Agriculture: A Comprehensive Perspective on Applications”, Agronomy, vol. 14, núm. 9, p. 1975, sep. 2024, doi: 10.3390/agronomy14091975.

M. H. M. Ghazali, A. Azmin, y W. Rahiman, “Drone Implementation in Precision Agriculture – A Survey”, International Journal of Emerging Technology and Advanced Engineering, vol. 12, núm. 4, pp. 67–77, abr. 2022, doi: 10.46338/IJETAE0422_10.

M. Dian Bah, A. Hafiane, y R. Canals, “Deep Learning with Unsupervised Data Labeling for Weed Detection in Line Crops in UAV Images”, Remote Sensing 2018, Vol. 10, Page 1690, vol. 10, núm. 11, p. 1690, oct. 2018, doi: 10.3390/RS10111690.

J. Yeom et al., “Comparison of Vegetation Indices Derived from UAV Data for Differentiation of Tillage Effects in Agriculture”, Remote Sensing 2019, Vol. 11, Page 1548, vol. 11, núm. 13, p. 1548, jun. 2019, doi: 10.3390/RS11131548.

K. Johansen et al., “Mapping the condition of macadamia tree crops using multi-spectral UAV and WorldView-3 imagery”, ISPRS Journal of Photogrammetry and Remote Sensing, vol. 165, pp. 28–40, jul. 2020, doi: 10.1016/J.ISPRSJPRS.2020.04.017.

Y. Meng, J. Su, J. Song, W.-H. Chen, y Y. Lan, “Experimental evaluation of UAV spraying for peach trees of different shapes: effects of operational parameters on droplet distribution”.

F. Al-Turjman y H. Altiparmak, “Smart agriculture framework using UAVs in the Internet of Things era”, Drones in Smart-Cities: Security and Performance, pp. 107–122, ene. 2020, doi: 10.1016/B978-0-12-819972-5.00007-0.

S. Vélez, R. Vacas, H. Martín, D. Ruano-Rosa, y S. Álvarez, “High-Resolution UAV RGB Imagery Dataset for Precision Agriculture and 3D Photogrammetric Reconstruction Captured over a Pistachio Orchard (Pistacia vera L.) in Spain”, Data (Basel), vol. 7, núm. 11, nov. 2022, doi: 10.3390/DATA7110157.

P. K. Singh y A. Sharma, “An intelligent WSN-UAV-based IoT framework for precision agriculture application”, Computers and Electrical Engineering, vol. 100, p. 107912, may 2022, doi: 10.1016/J.COMPELECENG.2022.107912.

R. Chin, C. Catal, y A. Kassahun, “Plant disease detection using drones in precision agriculture”, Precis Agric, vol. 24, núm. 5, pp. 1663–1682, oct. 2023, doi: 10.1007/S11119-023-10014-Y.

S. García-Gil, D. Ramos-Ramos, J. Berrocal, J. M. Murillo, y J. Galán-Jiménez, “Microservices migration: A pathway to improved energy efficiency in UAV networks”, Internet of Things, vol. 30, p. 101463, mar. 2025, doi: 10.1016/j.iot.2024.101463.

R. Guebsi, S. Mami, y K. Chokmani, “Drones in Precision Agriculture: A Comprehensive Review of Applications, Technologies, and Challenges”, Drones, vol. 8, núm. 11, p. 686, nov. 2024, doi: 10.3390/drones8110686.

D. Hawashin et al., “Blockchain applications in UAV industry: Review, opportunities, and challenges”, Journal of Network and Computer Applications, vol. 230, p. 103932, oct. 2024, doi: 10.1016/j.jnca.2024.103932.

S. S. Kamble, A. Gunasekaran, y S. A. Gawankar, “Achieving sustainable performance in a data-driven agriculture supply chain: A review for research and applications”, 2020. doi: 10.1016/j.ijpe.2019.05.022.

I. C. for T. Agriculture, I. F. P. R. Institute, y C. P. for B. D. in Agriculture, “CGIAR Big Data Coordination Platform Full Proposal”, 2016, Consultado: el 28 de agosto de 2023. [En línea]. Disponible en: https://cgspace.cgiar.org/handle/10947/4303

“FAO’s Big Data tool on food chains under the COVID-19 pandemic | UN-SPIDER Knowledge Portal”. Consultado: el 15 de marzo de 2023. [En línea]. Disponible en: https://un-spider.org/links-and-resources/covid-19/fao%E2%80%99s-big-data-tool-food-chains-under-covid-19-pandemic

C. Zhang y Z. Liu, “Application of big data technology in agricultural Internet of Things”, Int J Distrib Sens Netw, vol. 15, núm. 10, oct. 2019, doi: 10.1177/1550147719881610.

A. H. Basori, A. B. F. Mansur, y H. Y. Riskiawan, “SMARF: Smart Farming Framework Based on Big Data, IoT and Deep Learning Model for Plant Disease Detection and Prevention”, Communications in Computer and Information Science, vol. 1174 CCIS, pp. 44–56, 2020, doi: 10.1007/978-3-030-38752-5_4.

S. A. Lokhande, “Effective use of big data in precision agriculture”, 2021 International Conference on Emerging Smart Computing and Informatics, ESCI 2021, pp. 312–316, mar. 2021, doi: 10.1109/ESCI50559.2021.9396813.

L. Li, J. Lin, Y. Ouyang, y X. (Robert) Luo, “Evaluating the impact of big data analytics usage on the decision-making quality of organizations”, Technol Forecast Soc Change, vol. 175, p. 121355, feb. 2022, doi: 10.1016/J.TECHFORE.2021.121355.

E. M. Ouafiq, R. Saadane, y A. Chehri, “Data Management and Integration of Low Power Consumption Embedded Devices IoT for Transforming Smart Agriculture into Actionable Knowledge”, Agriculture 2022, Vol. 12, Page 329, vol. 12, núm. 3, p. 329, feb. 2022, doi: 10.3390/AGRICULTURE12030329.

V. M. Ngo, T. V. T. Duong, T. B. T. Nguyen, C. N. Dang, y O. Conlan, “A big data smart agricultural system: recommending optimum fertilisers for crops”, International Journal of Information Technology (Singapore), vol. 15, núm. 1, pp. 249–265, ene. 2023, doi: 10.1007/S41870-022-01150-1.

C. Wu et al., “China’s agricultural machinery operation big data system”, Comput Electron Agric, vol. 205, p. 107594, feb. 2023, doi: 10.1016/J.COMPAG.2022.107594.

H. Rana, M. U. Farooq, A. K. Kazi, M. A. Baig, y M. A. Akhtar, “Prediction of Agricultural Commodity Prices using Big Data Framework”, Engineering, Technology & Applied Science Research, vol. 14, núm. 1, pp. 12652–12658, feb. 2024, doi: 10.48084/ETASR.6468.

A. Stephen, P. Arumugam, y C. Arumugam, “An efficient deep learning with a big data-based cotton plant monitoring system”, International Journal of Information Technology, vol. 16, núm. 1, pp. 145–151, ene. 2024, doi: 10.1007/s41870-023-01536-9.

N. T. Giannakopoulos, M. C. Terzi, D. P. Sakas, N. Kanellos, K. S. Toudas, y S. P. Migkos, “Agroeconomic Indexes and Big Data: Digital Marketing Analytics Implications for Enhanced Decision Making with Artificial Intelligence-Based Modeling”, Information, vol. 15, núm. 2, p. 67, ene. 2024, doi: 10.3390/info15020067.

L. Abualigah y M. Alkhrabsheh, “Amended hybrid multi-verse optimizer with genetic algorithm for solving task scheduling problem in cloud computing”, J Supercomput, vol. 78, núm. 1, pp. 740–765, ene. 2022, doi: 10.1007/s11227-021-03915-0.

Y. Kalyani y R. Collier, “A Systematic Survey on the Role of Cloud, Fog, and Edge Computing Combination in Smart Agriculture.”, Sensors (Basel), vol. 21, núm. 17, sep. 2021, doi: 10.3390/s21175922.

X. Li, Z. Ma, X. Chu, y Y. Liu, “A Cloud-Assisted Region Monitoring Strategy of Mobile Robot in Smart Greenhouse”, 2019, doi: 10.1155/2019/5846232.

X. Li, Z. Ma, X. Chu, y Y. Liu, “A Cloud-Assisted Region Monitoring Strategy of Mobile Robot in Smart Greenhouse”, Mobile Information Systems, vol. 2019, 2019, doi: 10.1155/2019/5846232.

A. Paludo, W. R. Becker, J. Richetti, L. C. D. A. Silva, y J. A. Johann, “Mapping summer soybean and corn with remote sensing on Google Earth Engine cloud computing in Parana state – Brazil”, vol. 13, núm. 12, pp. 1624–1636, 2020, doi: 10.1080/17538947.2020.1772893.

T. C. Hsu, H. Yang, Y. C. Chung, y C. H. Hsu, “A Creative IoT agriculture platform for cloud fog computing”, Sustainable Computing: Informatics and Systems, vol. 28, p. 100285, dic. 2020, doi: 10.1016/J.SUSCOM.2018.10.006.

K. Phasinam et al., “Application of IoT and Cloud Computing in Automation of Agriculture Irrigation”, J Food Qual, vol. 2022, pp. 1–8, ene. 2022, doi: 10.1155/2022/8285969.

G. Idoje, T. Dagiuklas, y M. Iqbal, “Survey for smart farming technologies: Challenges and issues”, Computers & Electrical Engineering, vol. 92, p. 107104, jun. 2021, doi: 10.1016/J.COMPELECENG.2021.107104.

N. Islam, M. M. Rashid, F. Pasandideh, B. Ray, S. Moore, y R. Kadel, “A Review of Applications and Communication Technologies for Internet of Things (IoT) and Unmanned Aerial Vehicle (UAV) Based Sustainable Smart Farming”, Sustainability 2021, Vol. 13, Page 1821, vol. 13, núm. 4, p. 1821, feb. 2021, doi: 10.3390/SU13041821.

A. M. S. Kheir, K. A. Ammar, A. Amer, M. G. M. Ali, Z. Ding, y A. Elnashar, “Machine learning-based cloud computing improved wheat yield simulation in arid regions”, Comput Electron Agric, vol. 203, p. 107457, dic. 2022, doi: 10.1016/J.COMPAG.2022.107457.

S. Pizarro et al., “Implementing Cloud Computing for the Digital Mapping of Agricultural Soil Properties from High Resolution UAV Multispectral Imagery”, Remote Sensing 2023, Vol. 15, Page 3203, vol. 15, núm. 12, p. 3203, jun. 2023, doi: 10.3390/RS15123203.

A. A. Junior, T. J. A. da Silva, y S. P. Andrade, “Smart IoT lysimetry system by weighing with automatic cloud data storage”, Smart Agricultural Technology, vol. 4, p. 100177, ago. 2023, doi: 10.1016/J.ATECH.2023.100177.

M. Saban et al., “A Smart Agricultural System Based on PLC and a Cloud Computing Web Application Using LoRa and LoRaWan”, Sensors 2023, Vol. 23, Page 2725, vol. 23, núm. 5, p. 2725, mar. 2023, doi: 10.3390/S23052725.

A. Morchid, R. Jebabra, H. M. Khalid, R. El Alami, H. Qjidaa, y M. Ouazzani Jamil, “IoT-based smart irrigation management system to enhance agricultural water security using embedded systems, telemetry data, and cloud computing”, Results in Engineering, vol. 23, p. 102829, sep. 2024, doi: 10.1016/J.RINENG.2024.102829.

I. Ivanochko, M. J. Greguš, y O. Melnyk, “Smart Farming System Based on Cloud Computing Technologies”, Procedia Comput Sci, vol. 238, pp. 857–862, ene. 2024, doi: 10.1016/J.PROCS.2024.06.103.

S. Lee et al., “Image Processing for Smart Agriculture Applications Using Cloud-Fog Computing”, Sensors 2024, Vol. 24, Page 5965, vol. 24, núm. 18, p. 5965, sep. 2024, doi: 10.3390/S24185965.

P. Alvarado-Medellin et al., “Sistema dinámico para el monitoreo y control de redes inalámbricas de sensores que operan bajo el protocolo de comunicación ZigBee”, Ingeniería, investigación y tecnología, vol. 20, núm. 1, pp. 0–0, ene. 2019, doi: 10.22201/fi.25940732e.2019.20n1.003

W. Ma, J. Fan, C. Zhao, y H. Wu, “The realization of pig intelligent feeding equipment and network service platform”, IFIP Adv Inf Commun Technol, vol. 546, pp. 473–484, 2019, doi: 10.1007/978-3-030-06179-1_47.

H. Sharma, A. Haque, y Z. A. Jaffery, “Maximization of wireless sensor network lifetime using solar energy harvesting for smart agriculture monitoring”, Ad Hoc Networks, vol. 94, p. 101966, nov. 2019, doi: 10.1016/J.ADHOC.2019.101966.

B. Sharma, N. Kumar, M. W. Rasooli, y B. Bhushan, “Applicability Of Wireless Sensor Networks & Iot In Saffron & Wheat Crops: A Smart Agriculture Perspective”, Article in International Journal of Scientific & Technology Research, vol. 9, p. 2, 2020, Consultado: el 17 de febrero de 2024. [En línea]. Disponible en: www.ijstr.org

R. K. Singh, M. Aernouts, M. De Meyer, M. Weyn, y R. Berkvens, “Leveraging LoRaWAN Technology for Precision Agriculture in Greenhouses”, Sensors 2020, Vol. 20, Page 1827, vol. 20, núm. 7, p. 1827, mar. 2020, doi: 10.3390/S20071827.

M. Cicioğlu y A. Çalhan, “Smart agriculture with internet of things in cornfields”, Computers & Electrical Engineering, vol. 90, p. 106982, mar. 2021, doi: 10.1016/J.COMPELECENG.2021.106982.

J. Mabrouki, M. Azrour, D. Dhiba, Y. Farhaoui, y S. El Hajjaji, “IoT-based data logger for weather monitoring using arduino-based wireless sensor networks with remote graphical application and alerts”, Big Data Mining and Analytics, vol. 4, núm. 1, pp. 25–32, mar. 2021, doi: 10.26599/BDMA.2020.9020018.

A. Z. Bayih, J. Morales, Y. Assabie, y R. A. de By, “Utilization of Internet of Things and Wireless Sensor Networks for Sustainable Smallholder Agriculture”, Sensors 2022, Vol. 22, Page 3273, vol. 22, núm. 9, p. 3273, abr. 2022, doi: 10.3390/S22093273.

J. G. Rajendran, M. Alagarsamy, V. Seva, P. M. Dinesh, B. Rajangam, y K. Suriyan, “IoT based tracking cattle healthmonitoring system using wireless sensors”, Bulletin of Electrical Engineering and Informatics, vol. 12, núm. 5, pp. 3086–3094, oct. 2023, doi: 10.11591/eei.v12i5.4610.

M. Noor Fatima, P. Basin, with the King Abdullah, K. Mahmood, T. Roc, y M. Faizan Ayub, “Privacy-Preserving Three-Factor Authentication Protocol for Wireless Sensor Networks Deployed in Agricultural Field”, 2023, doi: 10.1145/3607142.

R. Tang, N. K. Aridas, y M. S. Abu Talip, “Design of Wireless Sensor Network for Agricultural Greenhouse Based on Improved Zigbee Protocol”, Agriculture 2023, Vol. 13, Page 1518, vol. 13, núm. 8, p. 1518, jul. 2023, doi: 10.3390/AGRICULTURE13081518.

A. K. Rao, K. K. Nagwanshi, y M. K. Shukla, “An optimized secure cluster-based routing protocol for IoT-based WSN structures in smart agriculture with blockchain-based integrity checking”, Peer Peer Netw Appl, vol. 17, núm. 5, pp. 3159–3181, sep. 2024, doi: 10.1007/s12083-024-01748-1.

K. Aggarwal, G. Sreenivasula Reddy, R. Makala, T. Srihari, N. Sharma, y C. Singh, “Studies on energy efficient techniques for agricultural monitoring by wireless sensor networks”, Computers and Electrical Engineering, vol. 113, p. 109052, ene. 2024, doi: 10.1016/j.compeleceng.2023.109052.

J. Navarro, R. R. Fernández, V. Aceña, A. Fernández-Isabel, C. Lancho, y I. M. de Diego, “Real-time classification of cattle behavior using Wireless Sensor Networks”, Internet of Things, vol. 25, p. 101008, abr. 2024, doi: 10.1016/J.IOT.2023.101008.

J. Xu, B. Gu, y G. Tian, “Review of agricultural IoT technology”, Artificial Intelligence in Agriculture, vol. 6, pp. 10–22, 2022, doi: 10.1016/j.aiia.2022.01.001.

M. S. Farooq, S. Riaz, A. Abid, K. Abid, y M. A. Naeem, “A Survey on the Role of IoT in Agriculture for the Implementation of Smart Farming”, IEEE Access, vol. 7, pp. 156237–156271, 2019, doi: 10.1109/ACCESS.2019.2949703.

J. Xu, B. Gu, y G. Tian, “Review of agricultural IoT technology”, Artificial Intelligence in Agriculture, vol. 6, pp. 10–22, ene. 2022, doi: 10.1016/J.AIIA.2022.01.001.

A. K. Vishwakarma, S. Chaurasia, K. Kumar, Y. N. Singh, y R. Chaurasia, “Internet of things technology, research, and challenges: a survey”, Multimed Tools Appl, may 2024, doi: 10.1007/s11042-024-19278-6.

M. E. E. Alahi, N. Pereira-Ishak, S. C. Mukhopadhyay, y L. Burkitt, “An Internet-of-Things Enabled Smart Sensing System for Nitrate Monitoring”, IEEE Internet Things J, vol. 5, núm. 6, pp. 4409–4417, dic. 2018, doi: 10.1109/JIOT.2018.2809669.

Y. A. Rivas-Sánchez, M. F. Moreno-Pérez, y J. Roldán-Cañas, “Environment Control with Low-Cost Microcontrollers and Microprocessors: Application for Green Walls”, Sustainability 2019, Vol. 11, Page 782, vol. 11, núm. 3, p. 782, feb. 2019, doi: 10.3390/SU11030782.

D. Glaroudis, A. Iossifides, y P. Chatzimisios, “Survey, comparison and research challenges of IoT application protocols for smart farming”, Computer Networks, vol. 168, p. 107037, feb. 2020, doi: 10.1016/J.COMNET.2019.107037.

A. K. Podder et al., “IoT based smart agrotech system for verification of Urban farming parameters”, Microprocess Microsyst, vol. 82, p. 104025, abr. 2021, doi: 10.1016/J.MICPRO.2021.104025.

A. Ghandar, A. Ahmed, S. Zulfiqar, Z. Hua, M. Hanai, y G. Theodoropoulos, “A decision support system for urban agriculture using digital twin: A case study with aquaponics”, IEEE Access, vol. 9, pp. 35691–35708, 2021, doi: 10.1109/ACCESS.2021.3061722.

F. Jamil, M. Ibrahim, I. Ullah, S. Kim, H. K. Kahng, y D. H. Kim, “Optimal smart contract for autonomous greenhouse environment based on IoT blockchain network in agriculture”, Comput Electron Agric, vol. 192, p. 106573, ene. 2022, doi: 10.1016/J.COMPAG.2021.106573.

R. P. Sharma, D. Ramesh, P. Pal, S. Tripathi, y C. Kumar, “IoT-Enabled IEEE 802.15.4 WSN Monitoring Infrastructure-Driven Fuzzy-Logic-Based Crop Pest Prediction”, IEEE Internet Things J, vol. 9, núm. 4, pp. 3037–3045, feb. 2022, doi: 10.1109/JIOT.2021.3094198.

G. Patrizi, A. Bartolini, L. Ciani, V. Gallo, P. Sommella, y M. Carratu, “A Virtual Soil Moisture Sensor for Smart Farming Using Deep Learning”, IEEE Trans Instrum Meas, vol. 71, 2022, doi: 10.1109/TIM.2022.3196446.

S. Mishra y S. K. Sharma, “Advanced contribution of IoT in agricultural production for the development of smart livestock environments”, Internet of Things, vol. 22, p. 100724, jul. 2023, doi: 10.1016/J.IOT.2023.100724.

W. L. Prasetya, A. Ma’arif, H. M. Marhoon, R. Alayi, y A.-N. Sharkawy, “Monitoring of Water Flow on Solar-Powered Pump for IoT-Based Agriculture”, Journal of Science in Agrotechnology, vol. 1, núm. 1, pp. 23–35, may 2023, doi: 10.21107/JSA.V1I1.6.

M. Krishnamoorthy, Md. Asif, P. P. Kumar, R. S. S. Nuvvula, B. Khan, y I. Colak, “A Design and Development of the Smart Forest Alert Monitoring System Using IoT”, J Sens, vol. 2023, núm. 1, ene. 2023, doi: 10.1155/2023/8063524.

S. Ahmed et al., “IoT based intelligent pest management system for precision agriculture”, Sci Rep, vol. 14, núm. 1, p. 31917, dic. 2024, doi: 10.1038/s41598-024-83012-3.

G. Krishnan et al., “A Raspberry Pi-Powered IoT Smart Farming System for Efficient Water Irrigation and Crop Monitoring”, Malaysian Journal of Science and Advanced Technology, vol. 4, núm. 2, pp. 149–158, mar. 2024, doi: 10.56532/MJSAT.V4I2.295.

Publicado

2025-12-09

Como Citar

[1]
L. Camacho, “Aplicações recentes de tecnologias digitais na agricultura”, Memoria investig. ing. (Facultad Ing., Univ. Montev.), nº 29, p. 166–189, dez. 2025.

Edição

Seção

Artigos