Estudo computacional do impacto direto de uma descarga atmosférica de 200 kA em tanques externos de teto flutuante
DOI:
https://doi.org/10.36561/ING.29.12Palavras-chave:
Descargas atmosféricas, Tanque de teto flutuante, Eletromagnetismo computacionalResumo
Este estudo investiga o comportamento eletromagnético de tanques de teto flutuante externo submetidos a uma descarga direta de raio de 200 kA. Utilizando eletromagnetismo computacional, calcularam-se os campos elétricos e magnéticos para dois cenários: com e sem o uso de condutores de bypass, conforme recomendado pela API RP-545. Os resultados das simulações revelaram que, na ausência de condutores de bypass, os valores do campo elétrico na junção entre a parede do tanque e o teto flutuante ultrapassam 200 kV/m, aumentando o risco de ignição. A implementação dos condutores de bypass reduziu significativamente a intensidade do campo, demonstrando sua eficácia na mitigação de riscos de incêndio em ambientes de armazenamento de líquidos inflamáveis.
Downloads
Referências
National Fire Protection Association; NFPA 30: Flammable and Combustible Liquids Code, 2015.
Benkaouha, B.; Chiremsel, Z.; Bellala, D.; Integration of fire safety barriers in the probabilistic analysis of accident scenarios triggered by lightning strike on atmospheric storage tanks, Journal of Failure Analysis and Prevention, 2022. Vol. 22: 2326–2351. doi: 10.1007/s11668-022-01500-y.
Cheng, Y.; Luo, Y.; Analysis of Natech risk induced by lightning strikes in floating roof tanks based on the Bayesian network model, Process Safety Progress, 2020. doi: 10.1002/prs.12164.
Jia, P.; Lv, J.; Sun, W.; Jin, H.; Meng, G.; Li, J.; Modified analytic hierarchy process for risk assessment of fire and explosion accidents of external floating roof tanks, Process Safety Progress, 2023. doi: 10.1002/prs.12520.
Adekitan, A. I.; Rock, M.; Analytical computation of lightning strike probability for floating roof tanks, Topical Issues of Rational Use of Natural Resources: Saint-Petersburg Scientific Conference Abstracts, Vol. 1, 2020. [Online]. Available: https://www.researchgate.net/publication/352373902
American Petroleum Institute; API 2003: Protection Against Ignitions Arising out of Static, Lightning, and Stray Currents, 2015.
International Electrotechnical Commission; IEC 62305: Protection against Lightning, Parts 1–4, 2010.
Rakov, V. A.; Uman, M. A.; Lightning: Physics and Effects, 2003, Cambridge University Press, Cambridge.
Rizk, F. A. M.; A model for switching impulse leader inception in air gaps, IEEE Transactions on Power Delivery, 1989. Vol. 4(1): 596–606.
Gallimberti, I.; The mechanism of the long spark formation, Journal de Physique Colloques, 1979. Vol. 40(C7): C7-193–C7-250.
American Petroleum Institute; API RP 505: Recommended Practice for Classification of Locations for Electrical Installations at Petroleum Facilities Classified as Class I, Zone 0, Zone 1, and Zone 2, 1997.
American Petroleum Institute; API RP 500: Recommended Practice for Classification of Locations for Electrical Installations at Petroleum Facilities Classified as Class I, Division 1 and Division 2, 1997.
Nucci, C. A.; Mazzetti, C.; Rachidi, F.; Ianoz, M. V.; Lightning return stroke models with specified channel-base current, IEEE Transactions on Electromagnetic Compatibility, 1990. Vol. 32(1): 79–92.
Agrawal, A. K.; Price, H. J.; Gurbaxani, S. H.; Transient response of a multiconductor line, IEEE Transactions on Electromagnetic Compatibility, 1980. Vol. 22(2): 119–129.
Baba, Y.; Electromagnetic Computation Methods for Lightning Surge Protection Studies, 1st ed., 2016, John Wiley & Sons, Singapore.
Zhang, W. S. C.; Zhang, J. W. M.; Risk assessment for fire and explosion accidents of steel oil tanks using improved AHP based on FTA, Process Safety Progress, 2015. Vol. 34(4): 393–402. doi: 10.1002/prs.11780.
American Petroleum Institute; API RP 545: Recommended Practice for Lightning Protection of Aboveground Storage Tanks for Flammable or Combustible Liquids, 2009.
Liu, Y.; Yakun, Z. F.; Analysis of the effect on the large floating roof oil tanks struck by indirect lightning based on FDTD, Proceedings of the International Conference on Lightning Protection (ICLP), 2014, pp. 1–4.
Publicado
Como Citar
Edição
Seção
Licença

Este trabalho está licenciado sob uma licença Creative Commons Attribution 4.0 International License.















