Despacho económico y de unidades en Micro Redes

Autores

  • Juan Pablo Fossati Universidad de Navarra, España

Palavras-chave:

Micro red, Despacho de unidade, Algoritmo genetic, Lista de prioridades, Sistemas de almacenamient, Energías removable, Generación distribuid, algoritmo de iteración lambda

Resumo

Producto de las diferencias existentes entre los sistemas tradicionales de generación y las micro redes (MR), el presente artículo propone un nuevo enfoque en lo que respecta la resolución de los problemas de Despacho Económico (DE) y de Unidades (DU). La fuerte presencia de energías renovables, la incorporación de sistemas de almacenamiento distribuidos y la posibilidad de que la micro red trabaje en isla o interconectada a la red principal son algunos de los aspectos a tener en cuenta a la hora de resolver dichos problemas. Primeramente se analizan las ventajas y desventajas del empleo del Algoritmo de Iteración Lambda (AIL) en la resolución de Despacho Económico, proponiéndose además modificaciones para adaptar el mismo al contexto de las micro redes. En lo que respecta a la resolución del despacho de unidades el artículo propone un algoritmo genético el cual emplea ciertos operadores que facilitan el tratamiento de las restricciones que surgen en este nuevo contexto. Finalmente se lleva a cabo una comparación entre el método de Lista de Prioridades (LP) y el algoritmo genético desarrollado. 

Downloads

Não há dados estatísticos.

Referências

[1] U.S. Department of Energy The potential benefits of distributed generation and rate-related issues that may impede their expansion, February 2007.
[2] Smallwood, C.L. Distributed generation in autonomous and nonautonomous micro grids. Rural Electric Power Conference, 2002. Colorado Springs.
[3] Momoh, J. A. and Boswell, G. D. An Approach to Determine Distributed Benefits in Power Networks, NAPS Power Symposium, 2008. Calgary, AB.
[4] Hernandez-Aramburo, C. A. and Green, T. C. Fuel Consumption Minimization of a Microgrid. IEEE Transaction on Industry Applications, June 2005, vol. 41, pp. 673 – 681.
[5] Jema, 4 March 2011. [Online]. Available: http://www.jema.es/eng/notas-prensa/leer/38/. [Accessed 15 05 2012].
[6] Padhy, N. P. Unit Commitment—A Bibliographical Survey IEEE Transactions on power systems, May 2004, vol. 19, pp. 1196-1205.
[7] Liang, H.Z. and Gooi, H.B. Unit Commitmtent in Microgrids by Improved Genetic Algorithm, Proceedings of IEPC Conference, Oct. 2010, Singapore.
[8] Logenthiarn, T. and Srinivasan, D. Short Term Generation Scheduling of a Microgrid, IEEE TECNON conference, Jan 2009, Singapore.
[9] Chowdhury, E. H. and Rahrnan, S. A review of recent advances in economic dispatch, IEEE Transactions on power systems 1990, vol. 5, pp. 1248 - 1259.
[10] Wood, A. J. and Wollenberg, B. F. Economic Dispatch of Thermal Units and Methods of Solutions Power generation operation and control, 1984, pp. 29-57.
[11] Victoire, T. A. and Sugnathan, P.N. Differrential Evolution and Evolutionary Programming for Solving Non-Convex Economic Dispatch Problems IEEE Congress on Evolutionary Computation, June 2008 Hong Kong.
[12] Sinha, N. and Lai, L. L. GA tuned differential evolution for economic load dispatch with non-convex cost function San Antonio, Texas, 2009.
[13] Adhinarayanan, T. and Sydulu, M. Particle Swarm Optimisation for Economic Dispatch with Cubic Fuel Cost Function Proceedings of TECNON conference, Hong Kong, Nov 2006.
[14] Bhattacharya, A. and Chattopadhyay, P. K. A Modified Particle Swarm Optimization for Solving the Non-Convex Economic Dispatch International Conference on Electrical Engineering/Electronics, Pattaya, Chonburi, Thailand, 2009.
[15] Wood, A. J. and Wollenberg, B. F. Unit Commitment Power generation operation and control, 1984, pp. 131-155.
[16] Swarup, K.S. and Yamashiro, S. Unit Commitment Solution Methodology Using Genetic Algorithm IEEE Trasaction on Power Systems, February 2002 vol. 17, pp. 87-91.
[17] Belede, L. and Jain, A. Unit Commitment with Nature and Biologically Inspired Computing Nature & Biologically Inspired Computing congress, Dec 2009, New Orleans, USA.
[18] Tingfang, Y. Methodological Priority List for Unit Commitment Problem International Conference on Computer Science and Software Engineering, 2008, Hubei, China.
[19] Srinivas, M. and Patnaik, L. M. Genetic Algorithms A Survey Computer, 1994, pp. 17-26.
[20] Bruke, E. K. and Kendall, G. Genetic Algorithms Search Methodologies, Springer, 2005, pp. 97-125.
[21] Capstone Turbine Corporation [Online]. Available: http://www.microturbine.com/. [Accessed 03/ 02/ 2012].
[22] U.S. Environmental Protection Agency Catalog of CHP technologies, December 2008.

Publicado

2012-10-01

Como Citar

[1]
J. P. Fossati, “Despacho económico y de unidades en Micro Redes”, Memoria investig. ing. (Facultad Ing., Univ. Montev.), nº 10, p. 83–96, out. 2012.

Edição

Seção

Artigos