Caracterização dinâmica do edifício 'María Nieves y Bustamante' da Universidade Católica de San Pablo de Arequipa e seu subsolo através do uso de sismógrafos

Autores

DOI:

https://doi.org/10.36561/ING.25.4

Palavras-chave:

Monitoramento estrutural, Monitoramento estratigráfico, Sismógrafo, Calibração de modelos estruturais

Resumo

A resposta sísmica de uma estrutura depende de suas características e do comportamento do solo circundante. Determinar períodos de vibração e seus caminhos é crucial para entender e prever a resposta a cargas externas. Freqüentemente, esses períodos são estimados com fórmulas teóricas, que podem não refletir a realidade. Neste estudo, medições de microvibrações com sismógrafos foram usadas para analisar um edifício universitário em Arequipa, Peru. As medições foram feitas em 22 locais da estrutura e uma no chão. Os dados foram processados para remover o ruído e se tornaram espectros de frequência. O período fundamental de vibração foi obtido, uma aproximação de seus modos e detalhes sobre as frequências de ressonância do solo, espessuras de estratos sob a estrutura e velocidades das ondas S no subsolo. Essa avaliação precisa, sem depender apenas de cálculos teóricos, é crucial para garantir a conformidade com os padrões de design. Além disso, essa abordagem não intrusiva reduz significativamente o tempo e os custos associados à obtenção de dados geotécnicos essenciais.

Downloads

Não há dados estatísticos.

Referências

N. F. Lopez Rivera, J. S. Maldonado Noboa, y L. M. Almache Sanchez, "Structural Health Monitoring of the 'La Estancia' Building of the Catholic University of Cuenca," Revista científica Dominio de las Ciencias, vol. 7, no. 6, pp. 1446-1463, 2021. DOI: https://10.23857/dc.v7i6.2403

A. R. Sánchez, R. Meli y M. M. Chávez, "Structural Monitoring of the Mexico City Cathedral (1990–2014)," International Journal of Architectural Heritage, vol. 10, no. 2-3, pp. 254-268, 2016. DOI: https://10.1080/15583058.2015.1113332

Ministerio de Vivienda Construcción y Saneamiento, "Diseño Sismorresistente E.030," 2018.

P. Máximo-Romero, R. Ramos-Aguilar, V. Galindo-López, M. Ávila-Cruz, G. Yáñez-Pérez y D. M. Romano-Cano, "Ambient Vibration Recorded in an 18th Century Religious Edification to Determine Its Dynamic Features," Boletín de Ciencias de la Tierra, no. 52, pp. 18-28, 2022. https://DOI.org/10.15446/rbct.n52.105813

A. M. Abdel-Ghaffar y R. H. Scanlan, "Ambient Vibration Studies of the Golden Gate Bridge: I. Suspended Structure," Journal of Engineering Mechanics, ASCE, vol. 111, no. EM4, pp. 463–482, abril 1985.

Y. Nakamura, J. Saita, E. Dilek Gurler, y R. Engineer, "Dynamic characteristics of leaning tower of Pisa using microtremor-preliminary results," Tokyo, 1999. [Online]. Available: https://www.researchgate.net/publication/255622539

S. Castellaro, L. Perricone, M. Bartolomei y S. Isani, "Dynamic characterization of the Eiffel tower," Eng Struct, vol. 126, pp. 628–640, Nov. 2016, DOI: https://10.1016/j.engstruct.2016.08.023

J. Wu, N. Hu, Y. Dong y Q. Zhang, "Monitoring dynamic characteristics of 600 m+ Shanghai Tower during two consecutive typhoons," Struct Control Health Monit, vol. 28, no. 2, Feb. 2021, DOI: https://10.1002/stc.2666

L. C. Suarez Ortiz, "Monitoreo de la salud estructural en edificaciones de altura. Caso Latinoamérica," 2019. [Online]. Disponible en: https://noesis.uis.edu.co/handle/20.500.14071/12831

L. C. Esquivel Salas y V. Schmidt Diaz, "Mediciones de vibraciones ambientales en tres edificios de concreto reforzado de 28, 11 y 6 pisos," Ing. sísm, no. 95, pp. 81-103, 2016. [Online]. Disponible en: http://www.scielo.org.mx/scielo.php?script=sci_arttext&pid=S0185-092X2016000200081&lng=es&nrm=iso. ISSN 0185-092X. Acceso el 19 de agosto de 2023.

Universidad Católica San Pablo, "Transparencia," 2022. https://ucsp.edu.pe/transparencia/alumnos-matriculados-por-facultad-y-escuela/ (accessed Oct. 12, 2022).

C. Yanqui, "Geología Preliminar de la Ciudad de Arequipa,". Informe Técnico presentado al CISMID, FIC, UNI, Lima, 1990.

C. Yanqui, "Zonificación Geotécnica de Arequipa," in VIII Congreso Nacional de Ingeniería Civil, Piura, 1990, pp. 623–637.

Y. Nakamura, "A method for dynamic characteristics estimation of subsurface using microtremors on the ground surface," Railway Technical Research Institute, Quarterly Reports, vol. 30, no. 1, pp. 25-33, enero 1989. Disponible en: http://www.rtri.or.jp/eng/. [Online]. ISSN: 0033-9008.

S. Castellaro y F. Mulargia, "VS30 estimates using constrained H/V measurements," Bulletin of the Seismological Society of America, vol. 99, no. 2 A, pp. 761–773, 2009, DOI: https://10.1785/0120080179.

J. B. Mander, M. J. N. Priestley y R. Park, "Theoretical stress-strain model for confined concrete," Journal of Structural Engineering, vol. 114, no. 8, pp. 1804, agosto 1988. DOI: 10.1061/(ASCE)0733-9445(1988)114:8(1804).

M. Menegotto y P. E. Pinto, "Method of analysis for cyclically loaded R.C. plane frames including changes in geometry and non-elastic behaviour of elements under combined normal force and bending," in Symposium on the Resistance and Ultimate Deformability of Structures Acted on by Well Defined Repeated Loads, International Association for Bridge and Structural Engineering, Zurich, Switzerland, 1973, pp. 15-22, DOI: https://10.5169/seals-13741

F. J. Crisafulli, "Seismic Behavior of Reinforced Concrete Structures with Masonry Infills," Tesis doctoral, University of Canterbury, Civil Engineering, 1997.

J. Lermo y F. J. Chávez-García, "Site effect evaluation using spectral ratios with only one station," Bulletin of the Seismological Society of America, vol. 83, no. 5, pp. 1574–1594, 1993. DOI: https://10.1785/BSSA0830051574

J. Lermo y F. J. Chávez-García, "Are microtremors useful in site response evaluation?," Bulletin of the Seismological Society of America, vol. 84, no. 5, pp. 1350–1364, mayo 1994. doi: https://10.1785/BSSA0840051350

M. Ibs-Von Seht y J. Wohlenberg, "Microtremor measurements used to map thickness of soft sediments," Bulletin of the Seismological Society of America, vol. 89, pp. 250-259, 1999

Ministerio de Vivienda Construcción y Saneamiento, "Diseño Sismorresistente E.030. 2006."

ASCE 7, Minimum Design Loads and Associated Criteria for Buildings and Other Structures. American Society of Civil Engineers (ASCE), 2017, pp. 1–889. DOI: https://10.1061/9780784414248.

American Association State Highway and Transportation Officials, "C42/C42M-12 Standard Test Method for Obtaining and Testing Drilled Cores and Sawed Beams of Concrete," 2012. DOI: https://10.1520/C0042_C0042M-12.

S. Castellaro, "Soil and structure damping from single station measurements," Soil Dynamics and Earthquake Engineering, vol. 90, pp. 480–493, Nov. 2016, DOI: https://10.1016/j.soildyn.2016.08.005.

S. Castellaro, "The complementarity of H/V and dispersion curves," Geophysics, vol. 81, no. 6, pp. T323–T338, Nov. 2016, DOI: https://10.1190/GEO2015-0399.1.

Publicado

2023-12-22

Como Citar

[1]
Y. Carpio, E. Simbor, e G. Villareal, “Caracterização dinâmica do edifício ’María Nieves y Bustamante’ da Universidade Católica de San Pablo de Arequipa e seu subsolo através do uso de sismógrafos”, Memoria investig. ing. (Facultad Ing., Univ. Montev.), nº 25, p. 27–52, dez. 2023.

Edição

Seção

Artigos