Efeito do ângulo de fibra nas propriedades mecânicas do polímero reforçado com fibra natural por meio de análise numérica

Autores

DOI:

https://doi.org/10.36561/ING.25.5

Palavras-chave:

Fibra natural, Materiais compostos, Análise numérica, Análise de estrutura, Resposta vibracional

Resumo

Este estudo se concentra no comportamento mecânico dos compósitos poliméricos reforçados com fibra natural (NFRPs), que estão ganhando destaque como materiais sustentáveis devido à sua biodegradabilidade e eco-filidade. Neste estudo, pretendemos obter uma profunda compreensão do comportamento mecânico dos NFRPs selecionados. A análise estrutural estática foi realizada para simular efeitos de tração, enquanto a análise vibracional foi realizada para prever frequências naturais. Os resultados indicaram que todas as fibras exibiram tensão mínima no ângulo de 67,5 ° e tensão máxima no ângulo de 22,5 ° durante o teste de tração. Além disso, ocorreu deformação mínima no ângulo de 0 °, enquanto a deformação máxima foi observada no ângulo de 67,5 °. Curiosamente, os NFRPs exibiram frequências naturais semelhantes para os modos inferiores (1º e 2º), com alterações desprezíveis devido a ângulos de fibra. O objetivo central deste estudo é mostrar a praticidade e a viabilidade dos NFRPs investigados, empregando uma análise de elementos finitos sofisticados para antecipar seu comportamento material de antemão, permitindo uma comparação abrangente das frequências naturais, tensões e deformações com polímero de fibra de carbono tradicional (CFRP) Compostos, explorando assim o potencial dos NFRPs como alternativas viáveis.

Downloads

Não há dados estatísticos.

Referências

J. S. Bradley, G. W. Hastings, and C. Johnson-Nurse, ‘Carbon fibre reinforced epoxy as a high strength, low modulus material for internal fixation plates’, Biomaterials, vol. 1, no. 1, 1980, doi: https://10.1016/0142-9612(80)90057-5.

S. Iqbal, T. Jamil, and S. Murtuza Mehdi, ‘Numerical simulation and validation of MWCNT-CFRP hybrid composite structure in lightweight satellite design’, Compos Struct, vol. 303, p. 116323, Jan. 2023, doi: https://10.1016/J.COMPSTRUCT.2022.116323.

M. Saafi, ‘Design and Fabrication of FRP Grids for Aerospace and Civil Engineering Applications’, J Aerosp Eng, vol. 13, no. 4, 2000, doi: 10.1061/(asce)0893-1321(2000)13:4(144).

F. M. Al-Oqla and S. M. Sapuan, ‘Natural fiber reinforced polymer composites in industrial applications: feasibility of date palm fibers for sustainable automotive industry’, J Clean Prod, vol. 66, pp. 347–354, Mar. 2014, doi: https://10.1016/J.JCLEPRO.2013.10.050.

G. Koronis, A. Silva, and M. Fontul, ‘Green composites: A review of adequate materials for automotive applications’, Compos B Eng, vol. 44, no. 1, pp. 120–127, Jan. 2013, doi: https://10.1016/J.COMPOSITESB.2012.07.004.

M. P. Ho et al., ‘Critical factors on manufacturing processes of natural fibre composites’, Compos B Eng, vol. 43, no. 8, pp. 3549–3562, Dec. 2012, doi: https://10.1016/J.COMPOSITESB.2011.10.001.

Y. Wu, C. Xia, L. Cai, A. C. Garcia, and S. Q. Shi, ‘Development of natural fiber-reinforced composite with comparable mechanical properties and reduced energy consumption and environmental impacts for replacing automotive glass-fiber sheet molding compound’, J Clean Prod, vol. 184, pp. 92–100, May 2018, doi: https://10.1016/J.JCLEPRO.2018.02.257.

‘Natural Fiber Composites Market Worth $5.83 Billion by 2019’. https://www.prnewswire.com/news-releases/natural-fiber-composites-market-worth-583-billion-by-2019-285331091.html (accessed Feb. 28, 2023).

M. Idicula, K. Joseph, and S. Thomas, ‘Mechanical performance of short banana/sisal hybrid fiber reinforced polyester composites’, Journal of Reinforced Plastics and Composites, vol. 29, no. 1, pp. 12–29, Jan. 2010, doi: https://10.1177/0731684408095033.

C. Alves et al., ‘Ecodesign of automotive components making use of natural jute fiber composites’, J Clean Prod, vol. 18, no. 4, pp. 313–327, Mar. 2010, doi: https://10.1016/J.JCLEPRO.2009.10.022.

P. Wambua, J. Ivens, and I. Verpoest, ‘Natural fibres: Can they replace glass in fibre reinforced plastics?’, Compos Sci Technol, vol. 63, no. 9, pp. 1259–1264, 2003, doi: https://10.1016/S0266-3538(03)00096-4.

N. Chand and M. Fahim, ‘Tribology of natural fiber polymer composites’.

Y. Li, T. Xie, and G. Yang, ‘Effects of polyphenylene oxide content on morphology, thermal, and mechanical properties of polyphenylene oxide/polyamide 6 blends’, J Appl Polym Sci, vol. 99, no. 5, pp. 2076–2081, Feb. 2006, doi: https://10.1002/app.22687.

R. C. Dante, D. A. Santamaria, and J. M. Gil, ‘Crosslinking and thermal stability of thermosets based on novolak and melamine’, J Appl Polym Sci, vol. 114, no. 6, pp. 4059–4065, Dec. 2009, doi: https://10.1002/app.31114.

G. Gündüz, D. Erol, and N. Akkaş, ‘Mechanical properties of unsaturated polyester-isocyanate hybrid polymer network and its E-glass fiber-reinforced composite’, J Compos Mater, vol. 39, no. 17, pp. 1577–1589, 2005, doi: https://10.1177/0021998305051086.

A. Sailesh, R. Arunkumar, and S. Saravanan, ‘Mechanical Properties and Wear Properties of Kenaf – Aloe Vera – Jute Fiber Reinforced Natural Fiber Composites’, Mater Today Proc, vol. 5, no. 2, pp. 7184–7190, Jan. 2018, doi: https://10.1016/J.MATPR.2017.11.384.

A. Shalwan and B. F. Yousif, ‘In State of Art: Mechanical and tribological behaviour of polymeric composites based on natural fibres’, Mater Des, vol. 48, pp. 14–24, Jun. 2013, doi: 10.1016/J.MATDES.2012.07.014.

T. Murugan and B. Senthil Kumar, ‘Studies on mechanical and dynamic mechanical properties of banana fibre nonwoven composite’, Mater Today Proc, vol. 39, pp. 1254–1258, Jan. 2021, doi: https://10.1016/J.MATPR.2020.04.155.

I. Ben Amor, H. Rekik, H. Kaddami, M. Raihane, M. Arous, and A. Kallel, ‘Effect of Palm Tree Fiber Orientation on Electrical Properties of Palm Tree Fiber-reinforced Polyester Composites’, http://dx.doi.org/10.1177/0021998309353961, vol. 44, no. 13, pp. 1553–1568, Dec. 2009, doi: https://10.1177/0021998309353961.

A. Gupta, A. Kumar, A. Patnaik, and S. Biswas, ‘Effect of different parameters on mechanical and erosion wear behavior of bamboo fiber reinforced epoxy composites’, Int J Polym Sci, vol. 2011, 2011, doi: https://10.1155/2011/592906.

M. Kumaresan, S. S, and K. .N, ‘Effect of fiber orientation on mechanical properties of sisal fiber reinforced epoxy composites’, vol. 18, pp. 289–294, Feb. 2015, doi: https://10.6180/jase.2015.18.3.09.

S. Ben Brahim and R. Ben Cheikh, ‘Influence of fibre orientation and volume fraction on the tensile properties of unidirectional Alfa-polyester composite’, Compos Sci Technol, vol. 67, no. 1, pp. 140–147, Jan. 2007, doi: https://10.1016/J.COMPSCITECH.2005.10.006.

B. Noolvi and S. Nagaraj, ‘Modal analysis of smart composite cantilever beams’, Mater Today Proc, vol. 27, pp. 1720–1722, Jan. 2020, doi: https://10.1016/J.MATPR.2020.03.643.

S. Dixit and S. S. Padhee, ‘Finite Element Analysis of Fiber Reinforced Hybrid Composites’, 2019. [Online]. Available: www.sciencedirect.comwww.materialstoday.com/proceedings2214-7853

J. K. Paul and S. Abdul kalam, ‘Mechanical Properties Characterization of Okra Fiber Based Green Composites & Hybrid Laminates’, 2017. [Online]. Available: www.sciencedirect.comwww.materialstoday.com/proceedings

S. B. R. Devireddy and S. Biswas, ‘Effect of Fiber Geometry and Representative Volume Element on Elastic and Thermal Properties of Unidirectional Fiber-Reinforced Composites’, J Compos, vol. 2014, pp. 1–12, Nov. 2014, doi: https://10.1155/2014/629175.

H. Akhavan and P. Ribeiro, ‘Natural modes of vibration of variable stiffness composite laminates with curvilinear fibers’, Compos Struct, vol. 93, no. 11, pp. 3040–3047, 2011, doi: https://10.1016/j.compstruct.2011.04.027.

M. Ashby, ‘Material property data for engineering materials’, 2021.

P. S. Shankar, K. T. Reddy, V. Chandra, and V. Chandra Sekhar, ‘Mechanical Performance and Analysis of Banana Fiber Reinforced Epoxy Composites’, 2013.

T. G. Yashas Gowda, M. R. Sanjay, K. Subrahmanya Bhat, P. Madhu, P. Senthamaraikannan, and B. Yogesha, ‘Polymer matrix-natural fiber composites: An overview’, Cogent Engineering, vol. 5, no. 1. Cogent OA, Jan. 01, 2018. doi: https://10.1080/23311916.2018.1446667.

M. Y. Khalid, A. Al Rashid, Z. U. Arif, M. F. Sheikh, H. Arshad, and M. A. Nasir, ‘Tensile strength evaluation of glass/jute fibers reinforced composites: An experimental and numerical approach’, Results in Engineering, vol. 10, Jun. 2021, doi: https://10.1016/j.rineng.2021.100232.

A. K. Mohanty, M. Misra, and G. Hinrichsen, ‘Biofibres, biodegradable polymers and biocomposites: An overview’, Macromolecular Materials and Engineering, vol. 276–277. pp. 1–24, 2000. doi: https://10.1002/(SICI)1439-2054(20000301)276:1<1::AID-MAME1>3.0.CO;2-W.

P. Wambua, J. Ivens, and I. Verpoest, ‘Natural fibres: Can they replace glass in fibre reinforced plastics?’, Compos Sci Technol, vol. 63, no. 9, pp. 1259–1264, 2003, doi: https://10.1016/S0266-3538(03)00096-4.

N. Saba, M. T. Paridah, and M. Jawaid, ‘Mechanical properties of kenaf fibre reinforced polymer composite: A review’, Construction and Building Materials, vol. 76. Elsevier Ltd, pp. 87–96, Feb. 01, 2015. doi: https://10.1016/j.conbuildmat.2014.11.043.

S. Jeyanthi and J. Janci Rani, ‘Improving Mechanical Properties by KENAF Natural Long Fiber Reinforced Composite for Automotive Structures’.

M. Rouway et al., ‘Prediction of Mechanical Performance of Natural Fibers Polypropylene Composites: A Comparison Study’, in IOP Conference Series: Materials Science and Engineering, IOP Publishing Ltd, Nov. 2020. doi: https://10.1088/1757-899X/948/1/012031.

R. Bhowmik, S. Das, D. Mallick, and S. S. Gautam, ‘Predicting the elastic properties of hemp fiber - A comparative study on different polymer composite’, in Materials Today: Proceedings, Elsevier Ltd, 2021, pp. 2510–2514. doi: https://10.1016/j.matpr.2021.09.562.

R. Potluri, ‘Mechanical Properties of Pineapple Leaf Fiber Reinforced Epoxy Infused with Silicon Carbide Micro Particles’, Journal of Natural Fibers, vol. 16, no. 1, pp. 137–151, Jan. 2019, doi: 10.1080/15440478.2017.1410511.

Y. Benveniste, ‘A NEW APPROACH TO THE APPLICATION OF MORI-TANAKA’S THEORY IN COMPOSITE MATERIALS’, 1987.

S. Bin Rayhan and M. M. Rahman, ‘Modeling elastic properties of unidirectional composite materials using Ansys Material Designer’, Procedia Structural Integrity, vol. 28, pp. 1892–1900, Jan. 2020, doi: https://10.1016/J.PROSTR.2020.11.012.

‘Ansys Mechanical Composite PrepPost (ACP) Advanced | Ansys Training’. https://www.ansys.com/training-center/course-catalog/structures/ansys-mechanical-composite-prepost-acp-advanced (accessed Mar. 02, 2023).

Publicado

2023-12-22

Como Citar

[1]
S. Anas Nisar e T. Jamil, “Efeito do ângulo de fibra nas propriedades mecânicas do polímero reforçado com fibra natural por meio de análise numérica”, Memoria investig. ing. (Facultad Ing., Univ. Montev.), nº 25, p. 53–71, dez. 2023.

Edição

Seção

Artigos