Effect of Fiber Angle on Mechanical Properties of the Natural Fiber-Reinforced Polymer Through Numerical Analysis

Authors

DOI:

https://doi.org/10.36561/ING.25.5

Keywords:

Natural Fiber, Composite Materials, Numerical Analysis, Structure Analysis, Vibrational response

Abstract

This study focuses on the mechanical behavior of natural fiber-reinforced polymer composites (NFRPs), which are gaining prominence as sustainable materials due to their biodegradability and eco-friendliness. In this study, we aimed to gain a profound understanding of the mechanical behavior of selected NFRPs. Static structural analysis was conducted to simulate tensile effects, while vibrational analysis was performed to predict natural frequencies. The results indicated that all fibers exhibited minimum stress at the 67.5° angle and maximum stress at the 22.5° angle during tensile testing. Additionally, minimum deformation occurred at the 0° angle, whereas maximum deformation was observed at the 67.5° angle. Interestingly, the NFRPs exhibited similar natural frequencies for the lower modes (1st and 2nd), with negligible alterations due to fiber angles. The core aim of this study is to showcase the practicality and viability of the investigated NFRPs by employing sophisticated finite element analysis to anticipate their material behavior beforehand, allowing for a comprehensive comparison of the natural frequencies, stresses, and deformations with traditional Carbon Fiber Reinforced Polymer (CFRP) composites, thereby exploring the potential of NFRPs as feasible alternatives.

Downloads

Download data is not yet available.

References

J. S. Bradley, G. W. Hastings, and C. Johnson-Nurse, ‘Carbon fibre reinforced epoxy as a high strength, low modulus material for internal fixation plates’, Biomaterials, vol. 1, no. 1, 1980, doi: https://10.1016/0142-9612(80)90057-5.

S. Iqbal, T. Jamil, and S. Murtuza Mehdi, ‘Numerical simulation and validation of MWCNT-CFRP hybrid composite structure in lightweight satellite design’, Compos Struct, vol. 303, p. 116323, Jan. 2023, doi: https://10.1016/J.COMPSTRUCT.2022.116323.

M. Saafi, ‘Design and Fabrication of FRP Grids for Aerospace and Civil Engineering Applications’, J Aerosp Eng, vol. 13, no. 4, 2000, doi: 10.1061/(asce)0893-1321(2000)13:4(144).

F. M. Al-Oqla and S. M. Sapuan, ‘Natural fiber reinforced polymer composites in industrial applications: feasibility of date palm fibers for sustainable automotive industry’, J Clean Prod, vol. 66, pp. 347–354, Mar. 2014, doi: https://10.1016/J.JCLEPRO.2013.10.050.

G. Koronis, A. Silva, and M. Fontul, ‘Green composites: A review of adequate materials for automotive applications’, Compos B Eng, vol. 44, no. 1, pp. 120–127, Jan. 2013, doi: https://10.1016/J.COMPOSITESB.2012.07.004.

M. P. Ho et al., ‘Critical factors on manufacturing processes of natural fibre composites’, Compos B Eng, vol. 43, no. 8, pp. 3549–3562, Dec. 2012, doi: https://10.1016/J.COMPOSITESB.2011.10.001.

Y. Wu, C. Xia, L. Cai, A. C. Garcia, and S. Q. Shi, ‘Development of natural fiber-reinforced composite with comparable mechanical properties and reduced energy consumption and environmental impacts for replacing automotive glass-fiber sheet molding compound’, J Clean Prod, vol. 184, pp. 92–100, May 2018, doi: https://10.1016/J.JCLEPRO.2018.02.257.

‘Natural Fiber Composites Market Worth $5.83 Billion by 2019’. https://www.prnewswire.com/news-releases/natural-fiber-composites-market-worth-583-billion-by-2019-285331091.html (accessed Feb. 28, 2023).

M. Idicula, K. Joseph, and S. Thomas, ‘Mechanical performance of short banana/sisal hybrid fiber reinforced polyester composites’, Journal of Reinforced Plastics and Composites, vol. 29, no. 1, pp. 12–29, Jan. 2010, doi: https://10.1177/0731684408095033.

C. Alves et al., ‘Ecodesign of automotive components making use of natural jute fiber composites’, J Clean Prod, vol. 18, no. 4, pp. 313–327, Mar. 2010, doi: https://10.1016/J.JCLEPRO.2009.10.022.

P. Wambua, J. Ivens, and I. Verpoest, ‘Natural fibres: Can they replace glass in fibre reinforced plastics?’, Compos Sci Technol, vol. 63, no. 9, pp. 1259–1264, 2003, doi: https://10.1016/S0266-3538(03)00096-4.

N. Chand and M. Fahim, ‘Tribology of natural fiber polymer composites’.

Y. Li, T. Xie, and G. Yang, ‘Effects of polyphenylene oxide content on morphology, thermal, and mechanical properties of polyphenylene oxide/polyamide 6 blends’, J Appl Polym Sci, vol. 99, no. 5, pp. 2076–2081, Feb. 2006, doi: https://10.1002/app.22687.

R. C. Dante, D. A. Santamaria, and J. M. Gil, ‘Crosslinking and thermal stability of thermosets based on novolak and melamine’, J Appl Polym Sci, vol. 114, no. 6, pp. 4059–4065, Dec. 2009, doi: https://10.1002/app.31114.

G. Gündüz, D. Erol, and N. Akkaş, ‘Mechanical properties of unsaturated polyester-isocyanate hybrid polymer network and its E-glass fiber-reinforced composite’, J Compos Mater, vol. 39, no. 17, pp. 1577–1589, 2005, doi: https://10.1177/0021998305051086.

A. Sailesh, R. Arunkumar, and S. Saravanan, ‘Mechanical Properties and Wear Properties of Kenaf – Aloe Vera – Jute Fiber Reinforced Natural Fiber Composites’, Mater Today Proc, vol. 5, no. 2, pp. 7184–7190, Jan. 2018, doi: https://10.1016/J.MATPR.2017.11.384.

A. Shalwan and B. F. Yousif, ‘In State of Art: Mechanical and tribological behaviour of polymeric composites based on natural fibres’, Mater Des, vol. 48, pp. 14–24, Jun. 2013, doi: 10.1016/J.MATDES.2012.07.014.

T. Murugan and B. Senthil Kumar, ‘Studies on mechanical and dynamic mechanical properties of banana fibre nonwoven composite’, Mater Today Proc, vol. 39, pp. 1254–1258, Jan. 2021, doi: https://10.1016/J.MATPR.2020.04.155.

I. Ben Amor, H. Rekik, H. Kaddami, M. Raihane, M. Arous, and A. Kallel, ‘Effect of Palm Tree Fiber Orientation on Electrical Properties of Palm Tree Fiber-reinforced Polyester Composites’, http://dx.doi.org/10.1177/0021998309353961, vol. 44, no. 13, pp. 1553–1568, Dec. 2009, doi: https://10.1177/0021998309353961.

A. Gupta, A. Kumar, A. Patnaik, and S. Biswas, ‘Effect of different parameters on mechanical and erosion wear behavior of bamboo fiber reinforced epoxy composites’, Int J Polym Sci, vol. 2011, 2011, doi: https://10.1155/2011/592906.

M. Kumaresan, S. S, and K. .N, ‘Effect of fiber orientation on mechanical properties of sisal fiber reinforced epoxy composites’, vol. 18, pp. 289–294, Feb. 2015, doi: https://10.6180/jase.2015.18.3.09.

S. Ben Brahim and R. Ben Cheikh, ‘Influence of fibre orientation and volume fraction on the tensile properties of unidirectional Alfa-polyester composite’, Compos Sci Technol, vol. 67, no. 1, pp. 140–147, Jan. 2007, doi: https://10.1016/J.COMPSCITECH.2005.10.006.

B. Noolvi and S. Nagaraj, ‘Modal analysis of smart composite cantilever beams’, Mater Today Proc, vol. 27, pp. 1720–1722, Jan. 2020, doi: https://10.1016/J.MATPR.2020.03.643.

S. Dixit and S. S. Padhee, ‘Finite Element Analysis of Fiber Reinforced Hybrid Composites’, 2019. [Online]. Available: www.sciencedirect.comwww.materialstoday.com/proceedings2214-7853

J. K. Paul and S. Abdul kalam, ‘Mechanical Properties Characterization of Okra Fiber Based Green Composites & Hybrid Laminates’, 2017. [Online]. Available: www.sciencedirect.comwww.materialstoday.com/proceedings

S. B. R. Devireddy and S. Biswas, ‘Effect of Fiber Geometry and Representative Volume Element on Elastic and Thermal Properties of Unidirectional Fiber-Reinforced Composites’, J Compos, vol. 2014, pp. 1–12, Nov. 2014, doi: https://10.1155/2014/629175.

H. Akhavan and P. Ribeiro, ‘Natural modes of vibration of variable stiffness composite laminates with curvilinear fibers’, Compos Struct, vol. 93, no. 11, pp. 3040–3047, 2011, doi: https://10.1016/j.compstruct.2011.04.027.

M. Ashby, ‘Material property data for engineering materials’, 2021.

P. S. Shankar, K. T. Reddy, V. Chandra, and V. Chandra Sekhar, ‘Mechanical Performance and Analysis of Banana Fiber Reinforced Epoxy Composites’, 2013.

T. G. Yashas Gowda, M. R. Sanjay, K. Subrahmanya Bhat, P. Madhu, P. Senthamaraikannan, and B. Yogesha, ‘Polymer matrix-natural fiber composites: An overview’, Cogent Engineering, vol. 5, no. 1. Cogent OA, Jan. 01, 2018. doi: https://10.1080/23311916.2018.1446667.

M. Y. Khalid, A. Al Rashid, Z. U. Arif, M. F. Sheikh, H. Arshad, and M. A. Nasir, ‘Tensile strength evaluation of glass/jute fibers reinforced composites: An experimental and numerical approach’, Results in Engineering, vol. 10, Jun. 2021, doi: https://10.1016/j.rineng.2021.100232.

A. K. Mohanty, M. Misra, and G. Hinrichsen, ‘Biofibres, biodegradable polymers and biocomposites: An overview’, Macromolecular Materials and Engineering, vol. 276–277. pp. 1–24, 2000. doi: https://10.1002/(SICI)1439-2054(20000301)276:1<1::AID-MAME1>3.0.CO;2-W.

P. Wambua, J. Ivens, and I. Verpoest, ‘Natural fibres: Can they replace glass in fibre reinforced plastics?’, Compos Sci Technol, vol. 63, no. 9, pp. 1259–1264, 2003, doi: https://10.1016/S0266-3538(03)00096-4.

N. Saba, M. T. Paridah, and M. Jawaid, ‘Mechanical properties of kenaf fibre reinforced polymer composite: A review’, Construction and Building Materials, vol. 76. Elsevier Ltd, pp. 87–96, Feb. 01, 2015. doi: https://10.1016/j.conbuildmat.2014.11.043.

S. Jeyanthi and J. Janci Rani, ‘Improving Mechanical Properties by KENAF Natural Long Fiber Reinforced Composite for Automotive Structures’.

M. Rouway et al., ‘Prediction of Mechanical Performance of Natural Fibers Polypropylene Composites: A Comparison Study’, in IOP Conference Series: Materials Science and Engineering, IOP Publishing Ltd, Nov. 2020. doi: https://10.1088/1757-899X/948/1/012031.

R. Bhowmik, S. Das, D. Mallick, and S. S. Gautam, ‘Predicting the elastic properties of hemp fiber - A comparative study on different polymer composite’, in Materials Today: Proceedings, Elsevier Ltd, 2021, pp. 2510–2514. doi: https://10.1016/j.matpr.2021.09.562.

R. Potluri, ‘Mechanical Properties of Pineapple Leaf Fiber Reinforced Epoxy Infused with Silicon Carbide Micro Particles’, Journal of Natural Fibers, vol. 16, no. 1, pp. 137–151, Jan. 2019, doi: 10.1080/15440478.2017.1410511.

Y. Benveniste, ‘A NEW APPROACH TO THE APPLICATION OF MORI-TANAKA’S THEORY IN COMPOSITE MATERIALS’, 1987.

S. Bin Rayhan and M. M. Rahman, ‘Modeling elastic properties of unidirectional composite materials using Ansys Material Designer’, Procedia Structural Integrity, vol. 28, pp. 1892–1900, Jan. 2020, doi: https://10.1016/J.PROSTR.2020.11.012.

‘Ansys Mechanical Composite PrepPost (ACP) Advanced | Ansys Training’. https://www.ansys.com/training-center/course-catalog/structures/ansys-mechanical-composite-prepost-acp-advanced (accessed Mar. 02, 2023).

Published

2023-12-22

How to Cite

[1]
S. Anas Nisar and T. Jamil, “Effect of Fiber Angle on Mechanical Properties of the Natural Fiber-Reinforced Polymer Through Numerical Analysis”, Memoria investig. ing. (Facultad Ing., Univ. Montev.), no. 25, pp. 53–71, Dec. 2023.

Issue

Section

Articles