Detecting a Spy with Quantum Cryptography

Authors

Keywords:

Quantum Computing, Quantum Key Distribution (QKD), Quantum Cryptography

Abstract

This article shows an implementation of quantum cryptography. We introduce the reader to the basic concepts of quantum computing so that they can easily understand the terms mentioned in the implementation related to cybersecurity and quantum key distribution (QKD). We show an application of QKD, where we can see how a spy is easily detected when a message is intercepted.

Downloads

Download data is not yet available.

References

R. P. Feynman (1982). Simulating physics with computers. Int. J. Theor. Phys. 21, 467–488

J.D. Whitfield, J. Yang, W. Wang, J.T. Heath and B. Harrison. Quantum computing 2022.

I. Pogorelov, T. Feldker, Ch.D. Marciniak, L. Postler, G. Jacob, O. Krieglsteiner, V. Podlesnic, M. Meth, V. Negnevitsky, M. Stadler, B. Höfer, C. Wächter, K. Lakhmanskiy, R. Blatt, P. Schindler and T. Monz. Compact Ion-Trap Quantum Computing Demonstrator. PRX Quantum, vol. 2, 2, pp. 020343, 2021. https://link.aps.org/doi/10.1103/PRXQuantum.2.020343

S. Kwon, A. Tomonaga, G. L. Bhai, S. J. Devitt and J.-S. Tsai. Gate-based superconducting quantum computing. J. Appl. Phys. 129(4): 041102. 2021. https://doi.org/10.1063/5.0029735

J. S. Lee, N. Farmakidis, C. D. Wright and H. Bhaskaran. Polarization-selective reconfigurability in hybridized-active-dielectric nanowires. Science Advances, 8eabn9459. 2022. DOI:10.1126/sciadv.abn9459

J. Wurtz et al. Aquila: Quera’s 256-qubit neutral-atom quantum computer. 2023. https://arxiv.org/abs/2306.11727.

M. Kornjača, R. Samajdar, T. Macrì et al. Trimer quantum spin liquid in a honeycomb array of Rydberg atoms. Commun Phys 6, 358 (2023). https://doi.org/10.1038/s42005-023-01470-z

S. H. Adachi and M. P. Henderson. Application of Quantum Annealing to Training of Deep Neural Networks. 2015. https://arxiv.org/abs/1510.06356

Y. Cao, J. Romero, J.P. Olson, M. Degroote, P.D. Johnson, M. Mária, I. D. Kivlichan, T. Menke, B. Peropadre, N.P.D. Sawaya, S. Sim, L. Veis and A. Aspuru-Guzik. Quantum Chemistry in the Age of Quantum Computing. Chemical Reviews, Vol. 119, No. 19, pp. 10856–10915, 2019. https://doi.org/10.1021/acs.chemrev.8b00803

Ma, M. Govoni and G. Galli. Quantum simulations of materials on near-term quantum computers.npj Comput Mater 6, 85, 2020. https://doi.org/10.1038/s41524-020-00353-z

Sivarajah. What is Quantum Control Theory? AZoQuantum. 2022. https://www.azoquantum.com/Article.aspx?ArticleID=335

R. Bassoli, H. Boche, C. Deppe, R. Ferrara, F. H. P. Fitzek, G. Janssen and S. Saeedinaeeni. Quantum Communication Networks. Foundations in Signal Processing, Communications and Networking. 2021. Springer. https://doi.org/10.1007/978-3-030-62938-0

Y.L. Len, T. Gefen, A. Retzker et al. Quantum metrology with imperfect measurements. Nat Commun 13, 6971. 2022. https://doi.org/10.1038/s41467-022-33563-8

A. Díaz, M. Rodriguez and M. Piattini. Towards a set of metrics for hybrid (quantum/classical) systems maintainability. Journal of Universal Computer Science, vol. 30, no. 1, pp. 25-48, 2024.

S. N., Singh, H. and N.A.U. An extensive review on quantum computers. Advances in Engineering Software, 174, 103337. 2022. https://doi.org/10.1016/j.advengsoft.2022.103337

J. Preskill, J. Quantum Computing in the NISQ era and beyond. Quantum, 2, 79. 2018. doi:10.22331/q-2018-08-06-79

M. Brooks. Beyond quantum supremacy: the hunt for useful quantum computers. Nature, 574(7776), 19-21. 2020. doi:10.1038/d41586-019-02936-3

C.H. Bennett. Logical reversibility of computation. IBM Journal of Research and Development, 17(6), 525-532. 1973. doi:10.1147/rd.176.0525

R. Raussendorf. Key ideas in quantum error correction. Philo- sophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences , 370 (1975), 4541-4565. 2012. doi:10.1098/rsta.2011.0494

J.L. Park. The concept of transition in quantum mechanics. Foundations of Physics, 1, 23-33. 1970.

P. Benioff. The computer as a physical system: A microscopic quantum mechanical Hamiltonian model of computers as represented by Turing machines. Journal of Statistical Physics, 22(5), 563-591. 1980. doi:10.1007/BF01011339

T. Toffoli. Reversible computing. In J. de Bakker J. van Leeuwen (Eds.), Automata, languages and programming (pp. 632–644). 1980. Berlin, Heidelberg: Springer Berlin Heidelberg.

P.W. Shor. Scheme for reducing decoherence in quantum computer memory, 52(4), R2493-R2496. 1995. doi:10.1103/PhysRevA.52.R2493

W. Pfaff, B.J. Hensen, H. Bernien, S.B. van Dam, M.S. Blok, T.H. Taminiau, R. Hanson. Unconditional quantum teleportation between distant solid-state quantum bits. Science, 345(6196), 532–535. 2014. doi:10.1126/science.1253512

K.K. Ko and E.S. Jung. Development of cybersecurity technology and algorithm based on quantum computing. Applied Sciences, 11(19). 2021. doi:10.3390/app11199085

X.L. Tianqi Zhou and J. Shen. Quantum cryptography for the future internet and the security analysis. Security and Communication Networks. 2018. https://doi.org/10.1155/2018/8214619

P.C. Uttam Ghosh and D. Das. A comprenhensive tutorial on cybersecurity in quantum computing paradigm. TechRxiv. 2023. https://doi.org/10.36227/techrxiv.22277251.v1

D.J. Bernstein, N. Heninger, P. Lou and L. Valenta. Post-quantum rsa. Cryptology ePrint Archive,

Paper 2017/351. 2017. https://eprint.iacr.org/2017/351

Published

2024-12-13

How to Cite

[1]
M. Solar, J.-P. Villacura, F. Cisternas Alvarez, and L. Dombrovskaia, “Detecting a Spy with Quantum Cryptography”, Memoria investig. ing. (Facultad Ing., Univ. Montev.), no. 27, pp. 200–219, Dec. 2024.

Issue

Section

Papers presented at the 1st Latin American Workshop on Quantum Computing (TLISC 2024)

Most read articles by the same author(s)