Estresse abiótico em clima neotropical influencia produção de pigmentos, capacidade antioxidante e expressão de desordens fisiológicas em maçãs

Autores

DOI:

https://doi.org/10.36561/ING.24.11

Palavras-chave:

Queimadura de sol, Queimadura solar, Vovó Smith, Espectrorradiometria, Potencial hídrico

Resumo

Maçãs produzidas em climas neotropicais apresentam danos associados a estresses abióticos que reduzem a sustentabilidade da cultura. O desenvolvimento de novas áreas de produção e as mudanças climáticas aumentam o interesse em estudar o comportamento da fruta em diferentes condições. Os objetivos do presente trabalho foram determinar fatores limitantes, avaliar respostas fisiológicas, analisar o potencial de prever distúrbios e avaliar estratégias de gerenciamento de estresse abiótico. Foi registrada uma alta variabilidade de condições predisponentes e desenvolvimento de danos, sendo a disponibilidade de água no solo a condição mais relacionada à queimadura solar. Os tratamentos reduziram os níveis de danos e modificaram o potencial do xilema. As aplicações de protetores não reduziram a incidência de queimaduras solares, mas o uso de rede reduziu tanto a queimadura solar quanto a escaldadura sem afetar os processos de crescimento dependentes da assimilação líquida. Diferenças no potencial hídrico entre lados da fruta, concentração de prolina e índice de espectrorradiometria PSRI480 apresentaram as melhores características preditivas, sugerindo focar a pesquisa no balanço hídrico do sistema e indicadores fisiológicos de estresse osmótico como forma de prever danos.

Downloads

Não há dados estatísticos.

Referências

MGAP-DIEA. (Ministerio de Ganadería Agricultura y Pesca – Dirección de estadísticas Agropecuarias) Anuario estadístico. [en línea]. 2014. Consultado 04/03/2021, disponible en: https://descargas.mgap.gub.uy/DIEA/Documentos%20compartidos/Anuario2014/Diea-Anuario%202014-Digital01.pdf

Gazzano I, Achkar M, Apezteguía E, Ariza J, Gómez Perazzoli A, Pivel J. Ambiente y crisis en Uruguay. Revista de Ciencias Sociales. 2021.34:13–40

Dogliotti S, García MC, Peluffo S, Dieste, JP, Pedemonte AJ, Bacigalupe GF, Scarlato M, Alliaume F, Alvarez J, Chiappe M, Rossing WAH. Co-innovation of family farm systems: A systems approach to sustainable agriculture. Agricultural Systems. 2014. 126:76–86. https://doi.org/10.1016/j.agsy.2013.02.009

MGAP-DIEA. (Ministerio de Ganadería Agricultura y Pesca – Dirección de estadísticas Agropecuarias). Encuesta frutícola de hoja caduca Zafra [en línea]. 2016. Consultado 04/03/2021, disponible en: https://www.gub.uy/ministerio-ganaderia-agricultura-pesca/datos-y-estadisticas/estadisticas/encuesta-fruticola-hoja-caduca-zafra-2016-nro-338

Proexport. Frutas Frescas. Uruguay XXI Instituto de Promoción de Inversiones y Exportaciones. 2013.12p.

XXI Uruguay. Producción y comercio exterior frutas frescas Inteligencia competitiva. URUGUAY XXI Instituto de Promoción de Inversiones y Exportaciones. 2016.

Feippe A, Muller I, Echeverría G, Lamarca N, Chiesa N, Viñas I, Albín A, Teixido N. Calidad de la carne y otros distintos sistemas productivos; componente frutas, manzana y citrus. Serie técnica n.° 163 INIA, Uruguay. 2007. 58p. ISBN: 978-9974-38-231-2

Feippe A. Desordenes fisiológicos y problemas más comunes observados durante el almacenamiento de manzanas, peras y ciruelas en Uruguay. Boletín de divulgación INIA n.° 55. Uruguay. 1995. 16p. ISBN: 9974-38-048-0

Feippe A, Rebellato J, Fredes A, Severino V. Jornada de divulgación: mancha lenticelar. Programa de Investigación en Producción Frutícola. Serie Actividades de Difusión n.° 649. 2011. pp 1–30

Reig G, Donahue DJ, Jentsch P. The Efficacy of Four Sunburn Mitigation Strategies and Their Effects on Yield , Fruit Quality , and Economic Performance of Honeycrisp Cv . Apples under Eastern New York ( USA ) Climatic Conditions. International Journal of Fruit Science. 2019. 0:1–21. doi: 10.1080/15538362.2019.1605558

Severino V, Arias-Sibillotte M, Dogliotti S, Frins E, Yuri J A, González-Talice J. Pre- and Postharvest Management of Sunburn in ‘Granny Smith’ Apples (Malus×domestica Borkh) under Neotropical Climate Conditions. Agronomy. 2021. (11)1618. https://www.mdpi.com/2073-4395/11/8/1618

Tripathi DK. Plant life under changing environment responses and management, Academic. London. 2020. 520p.

Ramírez F, Kallarackal J. Ecophysiology of temperate fruit trees in the tropics. Advances in Environmental Research. 2014. 31:89–101

Bernardi, R.E., Holmgren, M., Arim, M., Scheffer, M., Why are forests so scarce in subtropical South America? The shaping roles of climate, fire and livestock. For. Ecol. Manage. 2016. (363) 212–217.

FAO-MGAP (Food and Agriculture Organization – Ministerio de Ganadería Agricultura y Pesca), Sensibilidad y capacidad adaptativa de la viticultura y la fruticultura frente al cambio climático. Volumen VI de Clima de cambios: nuevos desafíos de adaptación en Uruguay. Autores: Ferrer M; Camussi G; Fourment M, Varela V; Pereyra G; Taks J, Contreras S; Cruz G; Astigarraga L; Picasso V. Resultado del proyecto FAO TCP URU 3302, Montevideo. Corrección de estilo: Galván M. Diseño: Grille E. 2013. Disponible en: http://www.fao.org/climatechange/84982/es

Giménez A, Lanfranco B. Adaptación al cambio climático y la variabilidad : algunas opciones de respuesta para la producción agrícola en Uruguay. Revista Mexicana de Ciencias Agricolas. 2012. 3:611–620

Glenn DM, Yuri JA. Photosynthetically active radiation (PAR)×ultraviolet radiation (UV) interact to initiate solar injury in apple. Scientia Horticulturae. 2013. 162:117–124. https://doi.org/10.1016/j.scienta.2013.07.037

Torres CA, Sepúlveda A, González-Talice J, Yuri JA. Razmilic I. Fruit water relations and osmoregulation on apples (Malus domestica Borkh.) with different sun exposures and sun-injury levels on the tree. Scientia Horticulturae. 2013. 161:143–152. doi: 10.1016/j.scienta.2013.06.035

Mupambi G. Water relations and sunburn in apple fruit. Dissertation presented for the degree of Doctor of Philosophy (Agric) in the Faculty of AgriScience at Stellenbosch University. 2017. 256p

Ferguson I, Volz R, Woolf A. Preharvest factors affecting physiological disorders of fruit. Postharvest Biology and Technology. 1999. 15:255–262. https://doi.org/10.1016/S0925-5214(98)00089-1

Schrader L, Sun J, Zhang J, Felicetti D, JUN T. Heat and Light-Induced Apple Skin Disorders: Causes and Prevention. Acta Horticulturae. 2008. 51–58.

Lin-Wang K, Micheletti D, Palmer J, Volz R, Lozano L, Espley R, Hellens RP, Chagnè D, Rowan DD, Troggio M, Iglesias I, Allan A C. High temperature reduces apple fruit colour via modulation of the anthocyanin regulatory complex. Plant, Cell & Environment. 2011. 34:1176–90. https://doi.org/10.1111/j.1365-3040.2011.02316.x

Torres CA, León L, Sánchez-Contreras J. Spectral fingerprints during sun injury development on the tree in Granny Smith apples: A potential non-destructive prediction tool during the growing season. Scientia Horticulturae. 2016. 209:165–172. https://doi.org/10.1016/j.scienta.2016.06.024

Monge E, Val J, Sanz M, Montañés ABL. El calcio nutriente para las plantas. Bitter pit en manzano. Anales de la Estación Experimental de Aula Dei (Zaragoza). 1994. Vol. 21, n.3: 189-201

Lötze E, Theron KI. Evaluating the Effectiveness of Pre-Harvest Calcium Applications for Bitter Pit Control in ‘Golden Delicious’ Apples Under South African Conditions. Joural of Plant Nutrition. 2007. 30:471–485. https://doi.org/10.1080/01904160601172098

Yuri JA. Daño por sol en manzanas. Fruticultura. 2010. 8:2–9

Szabó A, Tamás J, Nagy A. The influence of hail net on the water balance and leaf pigment content of apple orchards. Scientia Horticulturae. 2021. 283: https://doi.org/10.1016/j.scienta.2021.110112

Racsko J, Schrader LE. Sunburn of Apple Fruit: Historical Background, Recent Advances and Future Perspectives. Critical Reviews in Plant Sciences. 2012. 31:455–504. https://doi.org/10.1080/07352689.2012.696453

Yuri JA, Neira A, Fuentes M, Razmilic I, Lepe V, González MF. Bagging cv. Fuji, Raku Raku Apple Fruit Affects Their Phenolic Profile and Antioxidant Capacity. Erwerbs-Obstbau. 2020. 62:221–229. https://doi.org/10.1007/s10341-020-00475-0

Tartachnyk I, Kuckenberg J, Yuri JA, Noga G. Identifying fruit characteristics for non-invasive detection of sunburn in apple. Scientia Horticulturae. 2012. 134:108–113. https://doi.org/10.1016/j.scienta.2011.11.009

Solovchenko AE, Chivkunova OB, Gitelson AA, Merzlyak MN. Non-Destructive Estimation Pigment Content , Ripening , Quality and Damage in Apple Fruit with Spectral Reflectance in the Visible Range. Fresh Produce. 2010. 4:91–102

Solovchenko A, Dorokhov A, Shurygin B, Nikolenko A, Velichko V, Smirnov I, Khort D, Aksenov A, Kuzin A. Linking tissue damage to hyperspectral reflectance for non-invasive monitoring of apple fruit in orchards. Plants. 2021. 10:1–15. https://doi.org/10.3390/plants10020310

Severino V, Arias-Sibillotte M, Dogliotti S, Frins E, González-Talice J, Yuri J A. Climatic and physiological parameters related to the progress and prediction of apple sunburn damage in a neotropical climate. Advances in Horticultural Science. 2020. 34:431–440. https://doi.org/10.13128/ahsc

Tiscornia, G., Cal, A., Giménez, A., Análisis y caracterización de la variabilidad climática en algunas regiones de Uruguay. RIA Rev. Investig. Agropecu. 2016. 42, 66–71.

Severino, V. Estrés abiótico en clima neotropical influencia la producción de pigmentos, capacidad antioxidante y expresión de desórdenes fisiológicos en manzanas. Tesis de doctorado. Universidad de la República (Uruguay). 2022. Facultad de Agronomía. Unidad de Posgrados y Educación Permanente.

Publicado

2023-06-30

Como Citar

[1]
V. Severino, “Estresse abiótico em clima neotropical influencia produção de pigmentos, capacidade antioxidante e expressão de desordens fisiológicas em maçãs”, Memoria investig. ing. (Facultad Ing., Univ. Montev.), nº 24, p. 143–155, jun. 2023.

Edição

Seção

Artigos