Projeto e desenvolvimento de colheita Robo-Vec baseada em IoT
DOI:
https://doi.org/10.36561/ING.28.4Palavras-chave:
IoT, Robô de colheita, Visão computacional, Agricultura, AutomaçãoResumo
Este artigo apresenta o "Harvesting Robo-Vec", um robô de colheita autônomo baseado em IoT projetado para aumentar a eficiência e a precisão agrícola. Integrando a tecnologia IoT com métodos tradicionais, o robô automatiza tarefas e oferece monitoramento e controle em tempo real. Ele navega pelos campos de cultivo de forma autônoma, detecta produtos maduros usando tecnologias avançadas de detecção e imagem e realiza manobras de colheita precisas. O Harvesting Robo-Vec apresenta um módulo de comunicação IoT para conectividade perfeita com um sistema de controle centralizado, permitindo o gerenciamento remoto de vários robôs. O artigo descreve a arquitetura do robô, incluindo sua estrutura mecânica, sensores, algoritmos de controle e infraestrutura de comunicação, juntamente com considerações de segurança, gerenciamento de energia e robustez. O design iterativo, a prototipagem e os testes refinaram o desempenho do robô. Os resultados experimentais mostram que a colheita Robo-Vec melhora a eficiência, reduz os custos de mão-de-obra e aumenta a produtividade em comparação com os métodos manuais. Este estudo ressalta o potencial dos robôs baseados em IoT na agricultura, contribuindo para a agricultura de precisão e a pesquisa em robótica autônoma.
Downloads
Referências
Rehman, S.U., Zaidi, A.A., Wahab, Y.A., Arafat, M.Y. and Hatta, S.F.W.M., “Advanced Solar-Powered Seed Sowing Machine with Precision Seeding and Smart Control Features”. IEEE Regional Symposium on Micro and Nanoelectronics (RSM) pp. 134-137. IEEE. August 2022. https://doi.org/10.1109/RSM59033.2023.10326842
Haider, W. and Rehman, A., "Knowledge-based Soil Classification Towards Relevant Crop Production". Int. J. Adv. Comput. Sci. Appl., 10(12), pp.488-501. 2019. https://doi.org/10.14569/IJACSA.2019.0101266
Haider, W., Rehman, A.U., Durrani, N.M. and Rehman, S.U., “A generic approach for wheat disease classification and verification using expert opinion for knowledge-based decisions”. IEEE Access, 9, pp.31104-31129, 2021. https://doi.org/ 10.1109/ACCESS.2021.3058582
Aqeel-ur-Rehman, S.U.R., Khan, I.U., Moiz, M. and Hasan, S., “Security and privacy issues in IoT”. International Journal of Communication Networks and Information Security (IJCNIS), 8(3), pp.147-157. 2016.
Rehman, S.U., Mustafa, H., Shaikh, M.A. and Memon, S., “Towards Sustainable Energy Storage: A Low-Cost IoT Solution for Real-time Monitoring of Lead-Acid Battery Health”. Memoria Investigaciones en Ingeniería, (26), pp.202-212, 2024. https://doi.org/10.36561/ING.26.12
Siddiquee, K.N.E.A., Islam, M.S., Singh, N., Gunjan, V.K., Yong, W.H., Huda, M.N. and Naik, D.B., “Development of Algorithms for an IoT‐Based Smart Agriculture Monitoring System”. Wireless Communications and Mobile Computing, 2022(1), p.7372053. 2022.
Attri, Ishana, Lalit Kumar Awasthi, and Teek Parval Sharma. "Machine learning in agriculture: a review of crop management applications." Multimedia Tools and Applications 83, no. 5 (2024): 12875-12915. https://doi.org/10.1155/2022/7372053
Rai, H.M., Gupta, D., Mishra, S. and Sharma, H., “Agri-Bot: IoT Based Unmanned Smart Vehicle for Multiple Agriculture Operation”. International Conference on Simulation, Automation & Smart Manufacturing (SASM), pp. 1-6. IEEE. August 2021. https://doi.org/10.1109/SASM51857.2021.9841182
Feng, Q., Wang, X., Wang, G. and Li, Z., “Design and test of tomatoes harvesting robot”. IEEE international conference on information and automation, pp. 949-952. IEEE. August 2015. https://doi.org/10.1109/ICInfA.2015.7279423
Feng, Q., Zou, W., Fan, P., Zhang, C. and Wang, X., “Design and test of robotic harvesting system for cherry tomato”. International Journal of Agricultural and Biological Engineering, 11(1), pp.96-100, 2018. https://doi.org/10.25165/j.ijabe.20181101.2853
De-An, Z., Jidong, L., Wei, J., Ying, Z. and Yu, C., “Design and control of an apple harvesting robot”. Biosystems engineering, 110(2), pp.112-122, 2011. https://doi.org/10.1016/j.biosystemseng.2011.07.005
Rehman, A.U., Rehman, S.U. and Raheem, H., “Sinkhole attacks in wireless sensor networks: A survey”. Wireless Personal Communications, 106, pp.2291-2313, 2019. https://doi.org/10.1007/s11277-018-6040-7
Ayaz, M., Ammad-Uddin, M., Sharif, Z., Mansour, A. and Aggoune, E.H.M., “Internet-of-Things (IoT)-based smart agriculture: Toward making the fields talk”. IEEE access, 7, pp.129551-129583, 2019. https://doi.org/10.1109/ACCESS.2019.2932609
Pandey, G.K., Gurjar, D.S., Yadav, S., Jiang, Y. and Yuen, C. “UAV-Assisted Communications With RF Energy Harvesting: A Comprehensive Survey”. IEEE Communications Surveys & Tutorials, 2024. https://doi.org/10.1109/COMST.2024.3425597
Su, L., Liu, R., Liu, K., Li, K., Liu, L. and Shi, Y., “Greenhouse tomato picking robot chassis”. Agriculture, 13(3), p.532, 2023. https://doi.org/10.3390/agriculture13030532
Russo, M., Zhang, D., Liu, X.J. and Xie, Z., “A review of parallel kinematic machine tools: Design, modeling, and applications”. International Journal of Machine Tools and Manufacture, p.104118, 2024. https://doi.org/10.1016/j.ijmachtools.2024.104118
El-Khozondar, H.J., Mtair, S.Y., Qoffa, K.O., Qasem, O.I., Munyarawi, A.H., Nassar, Y.F., Bayoumi, E.H. and Abd El, A.A.E.B., “A smart energy monitoring system using ESP32 microcontroller.” e-Prime-Advances in Electrical Engineering, Electronics and Energy, 9, p.100666, 2024. https://doi.org/10.1016/j.prime.2024.100666
Shakir, M., Karim, S., Memon, S., Rehman, S.U. and Mustafa, H., “An improvement in IoT-based smart trash management system using Raspberry Pi”. International Journal of Computational Vision and Robotics, 14(2), pp.191-201, 2024. https://doi.org/10.1504/IJCVR.2024.136997
Groffen, J. and Hoskin, C.J., “A portable Raspberry Pi‐based camera set‐up to record behaviours of frogs and other small animals under artificial or natural shelters in remote locations”. Ecology and Evolution, 14(3), p.e10877, 2024. https://doi.org/10.1002/ece3.10877
Khaleel, H.Z., Ahmed, A.K., Al-Obaidi, A.S.M., Luckyardi, S., Al Husaeni, D.F., Mahmod, R.A. and Humaidi, A.J., “Measurement enhancement of ultrasonic sensor using pelican optimization algorithm for robotic application”. Indonesian Journal of Science and Technology, 9(1), pp.145-162, 2024. https://doi.org/10.17509/ijost.v9i1.64843
Zhang, Y. and Xu, D., “Design of an intelligent medication delivery robot based on CNN and OpenCV”. Ninth International Symposium on Sensors, Mechatronics, and Automation System (ISSMAS 2023), vol. 12981, pp. 1451-1458. SPIE, March, 2024. https://doi.org/10.1117/12.3014833
Maristany de las Casas, P., Kraus, L., Sedeño‐Noda, A. and Borndörfer, R., “Targeted multiobjective Dijkstra algorithm”. Networks, 82(3), pp.277-298, 2023. https://doi.org/10.1002/net.22174
Ehsan, A., Abuhaliqa, M.A.M., Catal, C. and Mishra, D., “RESTful API testing methodologies: Rationale, challenges, and solution directions”. Applied Sciences, 12(9), p.4369, 2022. https://doi.org/10.3390/app12094369
Amperawan, A., Andika, D., Anisah, M., Rasyad, S. and Handayani, P., “Confusion Matrix Using Yolo V3-Tiny on Quadruped Robot Based Raspberry PI 3B”, 7th FIRST 2023 International Conference on Global Innovations (FIRST-ESCSI 2023),(pp. 549-562. Atlantis Press, February, 2024. https://doi.org/10.2991/978-94-6463-386-3_56
Publicado
Como Citar
Edição
Seção
Licença

Este trabalho está licenciado sob uma licença Creative Commons Attribution 4.0 International License.