Diferentes métodos para la obtención de la proyección ortogonal sobre un hiperplano definido por n puntos en un espacio euclídeo de dimensión n

Autores

Palavras-chave:

Proyecciones ortogonales, Hiperespacios, Métodos Numéricos, MATLAB

Resumo

El presente artículo plantea nueve diferentes métodos de proyección ortogonal sobre un hiperespacio definido por puntos. Los métodos presentados se han implementado en el lenguaje MATLAB. Se han hecho comparaciones de tiempo y de precisión numérica tomando uno de ellos de referencia. Se ha puesto énfasis especial en un método basado en la inversión, comentando sus posibilidades y aportando demostraciones que justifican los pasos intermedios.

Downloads

Não há dados estatísticos.

Referências

[1] C. D. Meyer, Matrix Analysis and Applied Linear Algebra. Philadelphia: Society for Industrial and Applied Mathematics, 2000.
[2] J. A. Brandon and A. Cowley, ‘‘A weighted least squares method for circle fitting to frequency response data,’’ J. Sound and Vibrations, vol. 83, no. 3, pp. 419-424, 1983.
[3] D. E. Blair, Inversion theory and conformal mapping. Providence, RI: American Mathematical Society, 2000.
[4] G. H. Golub and C. Reinsch, “Singular value decomposition and least squares solutions,” in Handbook for Automatic Computation, vol. 2 (Linear Algebra). New York: Springer-Verlag, pp. 134–151, 1971.
[5] J. W. Demmel, Applied Numerical Linear Algebra. Philadelphia: Society for Industrial and Applied Mathematics, 1997.
[6] F. P. Preparata and M. I. Shamos, Computational geometry: an introduction. New York: Springer-Verlag, 1985.

Publicado

2015-11-02

Como Citar

[1]
J. Flaquer, “Diferentes métodos para la obtención de la proyección ortogonal sobre un hiperplano definido por n puntos en un espacio euclídeo de dimensión n”, Memoria investig. ing. (Facultad Ing., Univ. Montev.), nº 13, p. 33–48, nov. 2015.

Edição

Seção

Artigos

Artigos mais lidos pelo mesmo(s) autor(es)