Estimación del tiempo de fatiga para diferentes configuraciones geométricas de juntas cruciformes portadoras de carga utilizando ABAQUS y Fe-Safe
DOI:
https://doi.org/10.36561/ING.26.7Palabras clave:
Unión cruciforme portadora de carga, Análisis de fatiga, FEA Elástico-Plástico, ABAQUS, Fe-Safe, Geometrías cruciformes 2D y 3DResumen
Este trabajo de investigación se centra en el análisis de fatiga de uniones cruciformes portadoras de carga formadas por placas gruesas, que son componentes cruciales en las estructuras de los barcos. El estudio investiga la vida a fatiga de uniones cruciformes soldadas en ángulo utilizando geometrías 2D y 3D. Se consideran varias condiciones de carga y condiciones de contorno, y se realiza un análisis de elementos finitos elástico-plástico utilizando ABAQUS 2021. El número de ciclos hasta la falla se estima utilizando Fe-Safe y el modelo Brown Miller Morrow basado en deformaciones. Los resultados, presentados a través de gráficos de contorno, repeticiones de registro de vida y gráficos de rango de carga versus número de ciclos, revelan el comportamiento de fatiga y las ubicaciones de falla. Además, la metodología está validada con datos experimentales de la literatura, lo que demuestra su aplicabilidad. Los hallazgos proporcionan información sobre las características de fatiga de las uniones cruciformes que soportan carga en placas gruesas, lo que contribuye a mejorar el diseño y la confiabilidad en la industria de la construcción naval.
Descargas
Citas
D. W. a. J. L. Chuntong Li, "Numerical analysis and experimental study on the scaled model of a container ship lashing bridge," Ocean Engineering, vol. 201, no. March, p. 107095, 2020.
K. Y. L. P. a. Y. G. Jingxia Yue, "A frequency-time domain method for ship fatigue damage assessment," Ocean Engineering, vol. 220, no. August 2020, p. 108154, 2021.
W. Fricke, "Fatigue and Fracture of Ship Structures," Encyclopedia of Maritime and Offshore Engineering, pp. 1-12, 2017.
A. P. MSP. Raju, "A Study on Common Ship Structural Failures," International Journal of Mechanical Engineering and Technology, vol. 9, no. 7, pp. 746-754, 2018.
K. H. Yang, "Chapter 2 - Meshing, Element Types, and Element Shape Functions," in Basic Finite Element Method as Applied to Injury Biomechanics, K. Yang, Ed., Academic Press, 2018, pp. 51-109.
S. V. B. P. Shwetha K, "Comparison Between Thin Plate And Thick Plate From Navier Solution Using Matlab Software," International Research Journal of Engineering and Technology, vol. 05, no. 06, pp. 2675-2680, June 2018.
A. Risitano, "Welded Joints," in Mechanical Design, CRC Press, 2011, pp. 463-486.
J. K. Janusz Kozak, "The Influence of Manufacturing Oversizing on Postwelding Distortions of the Fillet Welded Joint," Polish Maritime Research, vol. 22, no. 4, pp. 59-63, 2015.
S. Chakraborty, "Common Welding Methods And Weld Defects In Shipbuilding Industry," Marine Insight, 9 July 2021. [Online]. Available: https://www.marineinsight.com/naval-architecture/common-welding-methods-weld-defects-shipbuilding-industry/.
B.-S. J. a. S.-W. K. Tae-Jun Kim, "Welding Deformation Analysis Based on Improved Equivalent Strain Method to Cover External Constraint During Cooling Stage," International Journal of Naval Architecture and Ocean Engineering, vol. 7, no. 5, pp. 805-816, 2015.
X. L. a. S. R. Wei Song, "Fatigue assessment of steel load‐carrying cruciform welded joints by means of local approaches," Fatigue & Fracture of Engineering Materials and Structures, vol. 41, no. 12, pp. 2598-2613, 2018.
Wikipedia, "Welding Joint," 1 January 2021. [Online]. Available: https://en.wikipedia.org/wiki/Welding_joint#cite_note-7.
N. T. T. Y. A. T. a. A. Y. Iwata Toshiaki, "Thickness effect on fatigue strength of welded joint improved by HFMI," Yosetsu Gakkai Ronbunshu/Quarterly Journal of the Japan Welding Society, vol. 34, no. 4, pp. 249-259, 2016.
J. S. Zuheir Barsoum, "Fatigue assessment of cruciform joints welded with different methods," Steel Research International, vol. 77, no. 12, pp. 882-888, 2006.
T. a. C. K.Saiprasertkit, "Experimental study of load-carrying cruciform joints containing incomplete penetration and strength under-matching in low and high cycle fatigue regions," Procedia Engineering, vol. 14, pp. 572-581, 2011.
T. O. a. Y. K. Kazuki Tatsuta, "A study on the size effect of cruciform joint for fatigue strength subjected to bending and axial stress," in Japan Society of Naval Architects Lecture Proceedings No. 22, 2016.
P. G. J. J. J. R. a. P. L. Heikki Remesa, "Fatigue strength modelling of high-performing welded joints," International Journal of Fatigue, vol. 135, no. February, p. 105555, 2020.
X. F. P. a. H. W.Song, "Fatigue failure transition analysis in load-carrying cruciform welded joints based on strain energy density approach," Fatigue and Fracture of Engineering Materials and Structures, vol. 40, no. 7, pp. 1164-1177, 2017.
W. a. C. C.Fischer, "Fatigue assessment of web-stiffened corners in plated structures by local approaches," Ship Technology Research, vol. 65, no. 2, pp. 69-78, 2018.
X. L. Wei Song, "High cycle fatigue assessment of steel load-carrying cruciform welded joints: An overview of recent results," Frattura ed Integrita Strutturale, vol. 12, no. 46, pp. 94-101, 2018.
N. A. Oscar Araque, "Weld magnification factor approach in cruciform joints considering postwelding cooling medium and weld size," Materials, vol. 11, no. 81, pp. 1-18, 2018.
N. O. Toru Shiratsuchia, "Investigation of thickness and bead profile effects on fatigue strength of welded joints based on relative stress gradient," International Journal of Fatigue, vol. 134, no. February, p. 105520, 2020.
Y. L. a. S. T. Yixun Wang, "Parametric formula for stress concentration factor of fillet weld joints with spline bead profile," Materials, vol. 13, no. 9, p. 4639, 2020.
P. T. a. G. G. Krzysztof L.Molski, "Stress concentration at cruciform welded joints under axial and bending loading modes," Welding in the World, vol. 64, no. 11, pp. 1867-1876, 2020.
K.-H. C. a. S. M. Wang Sub Shin, "Fatigue analysis of cruciform welded joint with weld penetration defects," Engineering Failure Analysis, vol. 120, no. November 2020, 2021.
D. S. G. R. F. B. Pietro Foti, "Fatigue assessment of cruciform joints Comparison between Strain Energy Density predictions and current standards and recommendations," Engineering Structures, vol. 230, no. November 2020, 2021.
Z. D. J. C. X. J. J. D. Yang Peng, "Fatigue behaviour of load-carrying fillet-welded cruciform joints of austenitic stainless steel," Journal of Constructional Steel Research, vol. 2021, 2021.
P. W. a. H. F. Jianxiao Ma, "Fatigue life of 7005 aluminum alloy cruciform joint considering welding residual stress," Materials, vol. 14, no. 5, pp. 1-20, 2021.
X. L. a. S. T. L. Haisheng Zhao, "Fracture analysis of load-carrying cruciform welded joint with a surface crack at weld toe," Engineering Fracture Mechanics, vol. 241, no. July 2020, pp. 1-21, 2021.
X. L. G. Z. S. W. D. S. M. H. a. F. B. Wei Song, "Notch energy-based low and high cycle fatigue assessment of load-carrying cruciform welded joints considering the strength mismatch," International Journal of Fatigue, vol. 151, p. 106410, 2021.
M. D. A. A. a. T. B. Hamidreza Rohani Raftar, "Re-evaluation of weld root fatigue strength for load-carrying fillet welded joints using the notch stress concept," International Journal of Fatigue, vol. 144, no. November 2020, 2021.
W. W. R. F. P. Z. a. Y. D. Zhiyu Jie, "Stress intensity factor and fatigue analysis of cracked cruciform welded joints strengthened by CFRP sheets considering the welding residual stress," Thin Walled Structures, vol. 154, 2020.
N. Y. A. E. Sasan Yazdani, "Enhancement of fatigue strength of SAE 1045 steel by tempering treatment and shot peening," Materials Science Forum, Vols. 561-565, no. PART 1, pp. 41-44, 2007.
S. A. N. J. O. I. Mazian Mohammad, "Fatigue life assessment of SAE 1045 carbon steel under strain events using the Weibull distribution," Journal of Mechanical Engineering, vol. 5, no. Specialissue 1, pp. 165-180, 2018.
D. S. SIMULIA, "Chapter 7 - Biaxial Fatigue," in Fatigue Theory Reference Manual, Dasault Systems, 2021, pp. 1-57.
D. S. SIMULIA, "Chapter 14 - Fatigue Analysis of Elastic FEA Results," in Fe-Safe 2019 User Guide, Dasault Systems, 2018, pp. 1-26.
D. S. SIMULIA, "Chapter 1 - Introduction," in Fe-Safe 2019 User Guide, Dasault Systems, 2018, pp. 1-6.
X. L. S. Wei Song, "Fatigue assessment of steel load-carrying cruciform welded joints by means of local approaches," Fatigue and Fracture of Engineering Materials and Structures, vol. 41, no. 12, pp. 2598-2613, 2018.