Estimativa do tempo de fadiga para diferentes configurações geométricas de juntas cruciformes portantes usando ABAQUS e Fe-Safe

Autores

DOI:

https://doi.org/10.36561/ING.26.7

Palavras-chave:

Junta cruciforme portante, Análise de fadiga, Geometrias elástico-plásticas FEA, ABAQUS, Fe-Safe, 2D e 3D cruciformes

Resumo

Este trabalho de pesquisa concentra-se na análise de fadiga de juntas cruciformes de suporte de carga compostas por placas espessas, que são componentes cruciais em estruturas de navios. O estudo investiga a vida à fadiga de juntas cruciformes soldadas em ângulo usando geometrias 2D e 3D. Várias condições de carregamento e condições de contorno são consideradas, e uma análise de elementos finitos elástico-plásticos é conduzida usando ABAQUS 2021. O número de ciclos até a falha é estimado usando Fe-Safe e o modelo Brown Miller Morrow baseado em deformação. Os resultados, apresentados através de gráficos de contorno, repetições de log de vida útil e gráficos de faixa de carga versus número de ciclos, revelam o comportamento da fadiga e os locais de falha. Adicionalmente, a metodologia é validada frente a dados experimentais da literatura, demonstrando sua aplicabilidade. As descobertas fornecem informações sobre as características de fadiga das juntas cruciformes de suporte de carga em chapas grossas, contribuindo para melhorar o design e a confiabilidade na indústria de construção naval.

Downloads

Não há dados estatísticos.

Referências

D. W. a. J. L. Chuntong Li, "Numerical analysis and experimental study on the scaled model of a container ship lashing bridge," Ocean Engineering, vol. 201, no. March, p. 107095, 2020.

K. Y. L. P. a. Y. G. Jingxia Yue, "A frequency-time domain method for ship fatigue damage assessment," Ocean Engineering, vol. 220, no. August 2020, p. 108154, 2021.

W. Fricke, "Fatigue and Fracture of Ship Structures," Encyclopedia of Maritime and Offshore Engineering, pp. 1-12, 2017.

A. P. MSP. Raju, "A Study on Common Ship Structural Failures," International Journal of Mechanical Engineering and Technology, vol. 9, no. 7, pp. 746-754, 2018.

K. H. Yang, "Chapter 2 - Meshing, Element Types, and Element Shape Functions," in Basic Finite Element Method as Applied to Injury Biomechanics, K. Yang, Ed., Academic Press, 2018, pp. 51-109.

S. V. B. P. Shwetha K, "Comparison Between Thin Plate And Thick Plate From Navier Solution Using Matlab Software," International Research Journal of Engineering and Technology, vol. 05, no. 06, pp. 2675-2680, June 2018.

A. Risitano, "Welded Joints," in Mechanical Design, CRC Press, 2011, pp. 463-486.

J. K. Janusz Kozak, "The Influence of Manufacturing Oversizing on Postwelding Distortions of the Fillet Welded Joint," Polish Maritime Research, vol. 22, no. 4, pp. 59-63, 2015.

S. Chakraborty, "Common Welding Methods And Weld Defects In Shipbuilding Industry," Marine Insight, 9 July 2021. [Online]. Available: https://www.marineinsight.com/naval-architecture/common-welding-methods-weld-defects-shipbuilding-industry/.

B.-S. J. a. S.-W. K. Tae-Jun Kim, "Welding Deformation Analysis Based on Improved Equivalent Strain Method to Cover External Constraint During Cooling Stage," International Journal of Naval Architecture and Ocean Engineering, vol. 7, no. 5, pp. 805-816, 2015.

X. L. a. S. R. Wei Song, "Fatigue assessment of steel load‐carrying cruciform welded joints by means of local approaches," Fatigue & Fracture of Engineering Materials and Structures, vol. 41, no. 12, pp. 2598-2613, 2018.

Wikipedia, "Welding Joint," 1 January 2021. [Online]. Available: https://en.wikipedia.org/wiki/Welding_joint#cite_note-7.

N. T. T. Y. A. T. a. A. Y. Iwata Toshiaki, "Thickness effect on fatigue strength of welded joint improved by HFMI," Yosetsu Gakkai Ronbunshu/Quarterly Journal of the Japan Welding Society, vol. 34, no. 4, pp. 249-259, 2016.

J. S. Zuheir Barsoum, "Fatigue assessment of cruciform joints welded with different methods," Steel Research International, vol. 77, no. 12, pp. 882-888, 2006.

T. a. C. K.Saiprasertkit, "Experimental study of load-carrying cruciform joints containing incomplete penetration and strength under-matching in low and high cycle fatigue regions," Procedia Engineering, vol. 14, pp. 572-581, 2011.

T. O. a. Y. K. Kazuki Tatsuta, "A study on the size effect of cruciform joint for fatigue strength subjected to bending and axial stress," in Japan Society of Naval Architects Lecture Proceedings No. 22, 2016.

P. G. J. J. J. R. a. P. L. Heikki Remesa, "Fatigue strength modelling of high-performing welded joints," International Journal of Fatigue, vol. 135, no. February, p. 105555, 2020.

X. F. P. a. H. W.Song, "Fatigue failure transition analysis in load-carrying cruciform welded joints based on strain energy density approach," Fatigue and Fracture of Engineering Materials and Structures, vol. 40, no. 7, pp. 1164-1177, 2017.

W. a. C. C.Fischer, "Fatigue assessment of web-stiffened corners in plated structures by local approaches," Ship Technology Research, vol. 65, no. 2, pp. 69-78, 2018.

X. L. Wei Song, "High cycle fatigue assessment of steel load-carrying cruciform welded joints: An overview of recent results," Frattura ed Integrita Strutturale, vol. 12, no. 46, pp. 94-101, 2018.

N. A. Oscar Araque, "Weld magnification factor approach in cruciform joints considering postwelding cooling medium and weld size," Materials, vol. 11, no. 81, pp. 1-18, 2018.

N. O. Toru Shiratsuchia, "Investigation of thickness and bead profile effects on fatigue strength of welded joints based on relative stress gradient," International Journal of Fatigue, vol. 134, no. February, p. 105520, 2020.

Y. L. a. S. T. Yixun Wang, "Parametric formula for stress concentration factor of fillet weld joints with spline bead profile," Materials, vol. 13, no. 9, p. 4639, 2020.

P. T. a. G. G. Krzysztof L.Molski, "Stress concentration at cruciform welded joints under axial and bending loading modes," Welding in the World, vol. 64, no. 11, pp. 1867-1876, 2020.

K.-H. C. a. S. M. Wang Sub Shin, "Fatigue analysis of cruciform welded joint with weld penetration defects," Engineering Failure Analysis, vol. 120, no. November 2020, 2021.

D. S. G. R. F. B. Pietro Foti, "Fatigue assessment of cruciform joints Comparison between Strain Energy Density predictions and current standards and recommendations," Engineering Structures, vol. 230, no. November 2020, 2021.

Z. D. J. C. X. J. J. D. Yang Peng, "Fatigue behaviour of load-carrying fillet-welded cruciform joints of austenitic stainless steel," Journal of Constructional Steel Research, vol. 2021, 2021.

P. W. a. H. F. Jianxiao Ma, "Fatigue life of 7005 aluminum alloy cruciform joint considering welding residual stress," Materials, vol. 14, no. 5, pp. 1-20, 2021.

X. L. a. S. T. L. Haisheng Zhao, "Fracture analysis of load-carrying cruciform welded joint with a surface crack at weld toe," Engineering Fracture Mechanics, vol. 241, no. July 2020, pp. 1-21, 2021.

X. L. G. Z. S. W. D. S. M. H. a. F. B. Wei Song, "Notch energy-based low and high cycle fatigue assessment of load-carrying cruciform welded joints considering the strength mismatch," International Journal of Fatigue, vol. 151, p. 106410, 2021.

M. D. A. A. a. T. B. Hamidreza Rohani Raftar, "Re-evaluation of weld root fatigue strength for load-carrying fillet welded joints using the notch stress concept," International Journal of Fatigue, vol. 144, no. November 2020, 2021.

W. W. R. F. P. Z. a. Y. D. Zhiyu Jie, "Stress intensity factor and fatigue analysis of cracked cruciform welded joints strengthened by CFRP sheets considering the welding residual stress," Thin Walled Structures, vol. 154, 2020.

N. Y. A. E. Sasan Yazdani, "Enhancement of fatigue strength of SAE 1045 steel by tempering treatment and shot peening," Materials Science Forum, Vols. 561-565, no. PART 1, pp. 41-44, 2007.

S. A. N. J. O. I. Mazian Mohammad, "Fatigue life assessment of SAE 1045 carbon steel under strain events using the Weibull distribution," Journal of Mechanical Engineering, vol. 5, no. Specialissue 1, pp. 165-180, 2018.

D. S. SIMULIA, "Chapter 7 - Biaxial Fatigue," in Fatigue Theory Reference Manual, Dasault Systems, 2021, pp. 1-57.

D. S. SIMULIA, "Chapter 14 - Fatigue Analysis of Elastic FEA Results," in Fe-Safe 2019 User Guide, Dasault Systems, 2018, pp. 1-26.

D. S. SIMULIA, "Chapter 1 - Introduction," in Fe-Safe 2019 User Guide, Dasault Systems, 2018, pp. 1-6.

X. L. S. Wei Song, "Fatigue assessment of steel load-carrying cruciform welded joints by means of local approaches," Fatigue and Fracture of Engineering Materials and Structures, vol. 41, no. 12, pp. 2598-2613, 2018.

Publicado

2024-07-03

Como Citar

[1]
Z. Mukhtar Mahmood, M. Asif, e S. Asad Ali Zaidi, “Estimativa do tempo de fadiga para diferentes configurações geométricas de juntas cruciformes portantes usando ABAQUS e Fe-Safe”, Memoria investig. ing. (Facultad Ing., Univ. Montev.), nº 26, p. 98–124, jul. 2024.

Edição

Seção

Artigos