Solução de agricultura vertical inteligente e sustentável baseada em IoT para desafios agrícolas no Paquistão
DOI:
https://doi.org/10.36561/ING.29.7Palavras-chave:
Agricultura orientada por IoT, Energia solar, Eficiência hídrica, Agricultura sustentável, Agricultura verticalResumo
A agricultura no Paquistão enfrenta desafios críticos, como a escassez de água, a utilização ineficiente dos recursos e os impactos das alterações climáticas, particularmente nas áreas urbanas e periurbanas. Este estudo apresenta um sistema de agricultura vertical inteligente, alimentado a energia solar, concebido para lidar com estas questões, integrando sensores capacitivos de humidade do solo, sensores de temperatura e humidade (DHT22) e sensores de luz (BH1750), controlados através do Raspberry Pi 4. O sistema off-grid, alimentado por um painel solar de 100 watts e bateria, possui uma irrigação inteligente acionada por um algoritmo Random Forest para otimizar a utilização da água. Ao longo de um teste de seis semanas de cultivo de tomate-cereja, o sistema obteve um aumento de 60–65% na produtividade, 40% de poupança de energia e uma redução de 28,57% no consumo de água em comparação com os métodos tradicionais. Embora promissor, as limitações incluem o pequeno tamanho do teste e a falta de dados de impacto ambiental a longo prazo. Os desafios de escalabilidade, como o custo, a manutenção e as restrições locais, devem ser abordados para uma adoção mais ampla. O trabalho futuro irá focar-se na expansão das variedades de culturas, na melhoria da integração da IA e na melhoria da acessibilidade para os pequenos agricultores para apoiar a agricultura urbana sustentável e a segurança alimentar no Paquistão.
Downloads
Referências
Al Meselmani, Moaed Ali. "Hydroponics: The Future of Sustainable Farming." In Hydroponics: The Future of Sustainable Farming, pp. 101-122. New York, NY: Springer US, 2024. https://doi.org/10.1007/978-1-0716-3993-1_6
Angel, S., Parent, J., Civco, D. L., Blei, A., & Potere, D. (2011). The dimensions of global urban expansion: Estimates and projections for all countries, 2000–2050. Progress in Planning, 75(2), 53–107. https://doi.org/10.1016/j.progress.2011.04.001
Sivakumar, M. V. K. (2005). Impacts of natural disasters in agriculture, rangeland and forestry: An overview. In Natural disasters and extreme events in agriculture: Impacts and mitigation (pp. 1–22). https://doi.org/10.1007/3-540-28307-2_1
Mahmood, G. G., Liberatori, S., & Mazzetto, F. (2025). Agricultural mechanization perspective in Pakistan: Present challenges and digital future. Journal of Agricultural Engineering. https://doi.org/10.4081/jae.2025.1636
Hamadani, H., Rashid, S. M., Parrah, J. D., Khan, A. A., Dar, K. A., Ganie, A. A., Gazal, A., Dar, R. A., & Ali, A. (2021). Traditional farming practices and its consequences. In Microbiota and biofertilizers, Vol. 2: Ecofriendly tools for reclamation of degraded soil environs (pp. 119–128). https://doi.org/10.1007/978-3-030-61010-4_6
Shi, X., Shi, C., Tablada, A., Guan, X., Cui, M., Rong, Y., Zhang, Q., & Xie, X. (2025). A review of research progress in vertical farming on façades: Design, technology, and benefits. Sustainability, 17(3), 921. https://doi.org/10.3390/su17030921
Rehman, S. U., Khan, I. U., Moiz, M., & Hasan, S. (2016). Security and privacy issues in IoT. International Journal of Communication Networks and Information Security, 8(3), 147.
Rehman, S. U., Mustafa, H., & Larik, A. R. (2021). IoT based substation monitoring & control system using Arduino with data logging. In 2021 4th International Conference on Computing & Information Sciences (ICCIS) (pp. 1–6). IEEE. https://doi.org/10.1109/ICCIS54243.2021.9676384
Botero-Valencia, J., García-Pineda, V., Valencia-Arias, A., Valencia, J., Reyes-Vera, E., Mejia-Herrera, M., & Hernández-García, R. (2025). Machine learning in sustainable agriculture: Systematic review and research perspectives. Agriculture, 15(4), 377. https://doi.org/10.3390/agriculture15040377
Saravanan, S., Akay, Y. M., Chen, T., & Akay, M. (2025). Impacts of climate change on global health: A review of preparedness, infectious disease, and excessive heat. Health and Technology, 15(1), 7–14. https://doi.org/10.1007/s12553-024-00927-7
Rehman, S. U., Khan, I., Rehman, N. U., & Hussain, A. (2022). Low-cost smart home automation system with advanced features. Quaid-E-Awam University Research Journal of Engineering Science and Technology Nawabshah, 20(01), 74–82. https://doi.org/10.52584/QRJ.2001.10
Rehman, S. U., & Khan, A. (2023). Integrating IoT technology for improved distribution transformer monitoring and protection. Electrical, Control and Communication Engineering, 19(1), 22–28. https://doi.org/10.2478/ecce-2023-0004
Chew, K.-M., Tan, S. C.-W., Loh, G. C.-W., Bundan, N., & Yiiong, S.-P. (2020). IoT soil moisture monitoring and irrigation system development. In Proceedings of the 2020 9th International Conference on Software and Computer Applications (pp. 247–252). https://doi.org/10.1145/3384544.3384595
Obaideen, K., Yousef, B. A. A., AlMallahi, M. N., Tan, Y. C., Mahmoud, M., Jaber, H., & Ramadan, M. (2022). An overview of smart irrigation systems using IoT. Energy Nexus, 7, 100124. https://doi.org/10.1016/j.nexus.2022.100124
Verma, S., Kumar, A., Kumari, M., Kumar, N., Hansda, S., Saurabh, A., Poonia, S., & Rathore, S. D. (2024). A review on hydroponics and vertical farming for vegetable cultivation: Innovations and challenges. Journal of Experimental Agriculture International, 46(12), 801–821. https://doi.org/10.9734/jeai/2024/v46i123190
Banerjee, C., & Adenaeuer, L. (2014). Up, up and away! The economics of vertical farming. Journal of Agricultural Studies, 2(1), 40–60. http://dx.doi.org/10.5296/jas.v2i1.4416
Hassanien, R. H. E., Li, M., & Lin, W. D. (2016). Advanced applications of solar energy in agricultural greenhouses. Renewable and Sustainable Energy Reviews, 54, 989–1001. https://doi.org/10.1016/j.rser.2015.10.095
Abdelhamid, M. A., Abdelkader, T. K., Sayed, H. A. A., Zhang, Z., Zhao, X., & Atia, M. F. (2025). Design and evaluation of a solar powered smart irrigation system for sustainable urban agriculture. Scientific Reports, 15(1), 11761. https://doi.org/10.1038/s41598-025-94251-3
Haider, W., & Rehman, A. (2019). Knowledge based soil classification towards relevant crop production. International Journal of Advanced Computer Science and Applications, 10(12), 488–501. https://doi.org/10.14569/IJACSA.2019.0101266
Haider, W., Rehman, A., Durrani, N. M., & Rehman, S. U. (2021). A generic approach for wheat disease classification and verification using expert opinion for knowledge-based decisions. IEEE Access, 9, 31104–31129. https://doi.org/10.1109/ACCESS.2021.3058582
Jegan, D., Surendran, R., & Madhusundar, N. (2024). Hydroponic using deep water culture for lettuce farming using random forest compared with decision tree algorithm. In 2024 8th International Conference on Electronics, Communication and Aerospace Technology (ICECA) (pp. 907–914). IEEE. https://doi.org/10.1109/ICECA63461.2024.10800972
Zia, H., Rehman, A., Harris, N. R., Fatima, S., & Khurram, M. (2021). An experimental comparison of IoT-based and traditional irrigation scheduling on a flood-irrigated subtropical lemon farm. Sensors, 21(12), 4175. https://doi.org/10.3390/s21124175
Ragab, M. A., Badreldeen, M. M. M., Sedhom, A., & Mamdouh, W. M. (2022). IOT based smart irrigation system. International Journal of Industry and Sustainable Development, 3(1), 76-86. https://doi.org/10.21608/ijisd.2022.148007.1021
Zafar, U., Arshad, M., Masud Cheema, M. J., & Ahmad, R. (2020). Sensor based drip irrigation to enhance crop yield and water productivity in semi-arid climatic region of Pakistan. Pakistan Journal of Agricultural Sciences, 57(5). https://doi.org/10.21162/PAKJAS/20.83
Publicado
Como Citar
Edição
Seção
Licença
Copyright (c) 2025 Sadiq Ur Rehman, Muhammad Adeel Mannan, Muhammad Ahsan Shaikh, Muhammad Uzair

Este trabalho está licenciado sob uma licença Creative Commons Attribution 4.0 International License.















